Parsimonious Computing: A Minority Training Regime for Effective
Prediction in Large Microarray Expression Data Sets
- URL: http://arxiv.org/abs/2005.08442v1
- Date: Mon, 18 May 2020 03:45:05 GMT
- Title: Parsimonious Computing: A Minority Training Regime for Effective
Prediction in Large Microarray Expression Data Sets
- Authors: Shailesh Sridhar, Snehanshu Saha, Azhar Shaikh, Rahul Yedida, Sriparna
Saha
- Abstract summary: We propose a novel method for carrying out gene expression inference on large microarray data sets with a shallow architecture constrained by limited computing resources.
A combination of random sub-sampling of the dataset, an adaptive Lipschitz constant inspired learning rate and a new activation function, A-ReLU helped accomplish the results reported in the paper.
- Score: 20.894226248856313
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Rigorous mathematical investigation of learning rates used in
back-propagation in shallow neural networks has become a necessity. This is
because experimental evidence needs to be endorsed by a theoretical background.
Such theory may be helpful in reducing the volume of experimental effort to
accomplish desired results. We leveraged the functional property of Mean Square
Error, which is Lipschitz continuous to compute learning rate in shallow neural
networks. We claim that our approach reduces tuning efforts, especially when a
significant corpus of data has to be handled. We achieve remarkable improvement
in saving computational cost while surpassing prediction accuracy reported in
literature. The learning rate, proposed here, is the inverse of the Lipschitz
constant. The work results in a novel method for carrying out gene expression
inference on large microarray data sets with a shallow architecture constrained
by limited computing resources. A combination of random sub-sampling of the
dataset, an adaptive Lipschitz constant inspired learning rate and a new
activation function, A-ReLU helped accomplish the results reported in the
paper.
Related papers
- Automatic debiasing of neural networks via moment-constrained learning [0.0]
Naively learning the regression function and taking a sample mean of the target functional results in biased estimators.
We propose moment-constrained learning as a new RR learning approach that addresses some shortcomings in automatic debiasing.
arXiv Detail & Related papers (2024-09-29T20:56:54Z) - Equation Discovery with Bayesian Spike-and-Slab Priors and Efficient Kernels [57.46832672991433]
We propose a novel equation discovery method based on Kernel learning and BAyesian Spike-and-Slab priors (KBASS)
We use kernel regression to estimate the target function, which is flexible, expressive, and more robust to data sparsity and noises.
We develop an expectation-propagation expectation-maximization algorithm for efficient posterior inference and function estimation.
arXiv Detail & Related papers (2023-10-09T03:55:09Z) - Iterative self-transfer learning: A general methodology for response
time-history prediction based on small dataset [0.0]
An iterative self-transfer learningmethod for training neural networks based on small datasets is proposed in this study.
The results show that the proposed method can improve the model performance by near an order of magnitude on small datasets.
arXiv Detail & Related papers (2023-06-14T18:48:04Z) - An Information-Theoretic Analysis of Compute-Optimal Neural Scaling Laws [24.356906682593532]
We study the compute-optimal trade-off between model and training data set sizes for large neural networks.
Our result suggests a linear relation similar to that supported by the empirical analysis of chinchilla.
arXiv Detail & Related papers (2022-12-02T18:46:41Z) - Less is More: Rethinking Few-Shot Learning and Recurrent Neural Nets [2.824895388993495]
We provide theoretical guarantees for reliable learning under the information-theoretic AEP.
We then focus on a highly efficient recurrent neural net (RNN) framework and propose a reduced-entropy algorithm for few-shot learning.
Our experimental results demonstrate significant potential for improving learning models' sample efficiency, generalization, and time complexity.
arXiv Detail & Related papers (2022-09-28T17:33:11Z) - Bagged Polynomial Regression and Neural Networks [0.0]
Series and dataset regression are able to approximate the same function classes as neural networks.
textitbagged regression (BPR) is an attractive alternative to neural networks.
BPR performs as well as neural networks in crop classification using satellite data.
arXiv Detail & Related papers (2022-05-17T19:55:56Z) - Convolutional generative adversarial imputation networks for
spatio-temporal missing data in storm surge simulations [86.5302150777089]
Generative Adversarial Imputation Nets (GANs) and GAN-based techniques have attracted attention as unsupervised machine learning methods.
We name our proposed method as Con Conval Generative Adversarial Imputation Nets (Conv-GAIN)
arXiv Detail & Related papers (2021-11-03T03:50:48Z) - Imputation-Free Learning from Incomplete Observations [73.15386629370111]
We introduce the importance of guided gradient descent (IGSGD) method to train inference from inputs containing missing values without imputation.
We employ reinforcement learning (RL) to adjust the gradients used to train the models via back-propagation.
Our imputation-free predictions outperform the traditional two-step imputation-based predictions using state-of-the-art imputation methods.
arXiv Detail & Related papers (2021-07-05T12:44:39Z) - Robust Implicit Networks via Non-Euclidean Contractions [63.91638306025768]
Implicit neural networks show improved accuracy and significant reduction in memory consumption.
They can suffer from ill-posedness and convergence instability.
This paper provides a new framework to design well-posed and robust implicit neural networks.
arXiv Detail & Related papers (2021-06-06T18:05:02Z) - RIFLE: Backpropagation in Depth for Deep Transfer Learning through
Re-Initializing the Fully-connected LayEr [60.07531696857743]
Fine-tuning the deep convolution neural network(CNN) using a pre-trained model helps transfer knowledge learned from larger datasets to the target task.
We propose RIFLE - a strategy that deepens backpropagation in transfer learning settings.
RIFLE brings meaningful updates to the weights of deep CNN layers and improves low-level feature learning.
arXiv Detail & Related papers (2020-07-07T11:27:43Z) - Real-Time Regression with Dividing Local Gaussian Processes [62.01822866877782]
Local Gaussian processes are a novel, computationally efficient modeling approach based on Gaussian process regression.
Due to an iterative, data-driven division of the input space, they achieve a sublinear computational complexity in the total number of training points in practice.
A numerical evaluation on real-world data sets shows their advantages over other state-of-the-art methods in terms of accuracy as well as prediction and update speed.
arXiv Detail & Related papers (2020-06-16T18:43:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.