論文の概要: Brain-inspired Distributed Cognitive Architecture
- arxiv url: http://arxiv.org/abs/2005.08603v1
- Date: Mon, 18 May 2020 11:38:32 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-01 23:50:06.550900
- Title: Brain-inspired Distributed Cognitive Architecture
- Title(参考訳): 脳にインスパイアされた分散認知アーキテクチャ
- Authors: Leendert A Remmelzwaal, Amit K Mishra, George F R Ellis
- Abstract要約: 感覚処理,分類,文脈予測,感情的タグ付けを取り入れた,脳に触発された認知アーキテクチャを提案する。
本研究は,バイオリアリスティックな注目方向と感覚選択の基礎を築き,バイオリアリスティックな人工知能システムを実現するための重要なステップであると考えている。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: In this paper we present a brain-inspired cognitive architecture that
incorporates sensory processing, classification, contextual prediction, and
emotional tagging. The cognitive architecture is implemented as three modular
web-servers, meaning that it can be deployed centrally or across a network for
servers. The experiments reveal two distinct operations of behaviour, namely
high- and low-salience modes of operations, which closely model attention in
the brain. In addition to modelling the cortex, we have demonstrated that a
bio-inspired architecture introduced processing efficiencies. The software has
been published as an open source platform, and can be easily extended by future
research teams. This research lays the foundations for bio-realistic attention
direction and sensory selection, and we believe that it is a key step towards
achieving a bio-realistic artificial intelligent system.
- Abstract(参考訳): 本稿では,知覚処理,分類,文脈予測,感情タグ付けを組み込んだ,脳にインスパイアされた認知アーキテクチャを提案する。
cognitive architectureは3つのモジュール化されたwebサーバとして実装されている。
実験では、脳内の注意を密にモデル化する2つの異なる動作、すなわち、高濃度モードと低濃度モードの動作を明らかにした。
大脳皮質のモデリングに加えて、バイオインスパイアされたアーキテクチャが処理効率をもたらすことを実証した。
このソフトウェアはオープンソースプラットフォームとして公開されており、将来の研究チームによって容易に拡張できる。
本研究は,バイオリアリスティックな注目方向と感覚選択の基礎を築き,バイオリアリスティックな人工知能システムを実現するための重要なステップであると考えている。
関連論文リスト
- Connectivity-Inspired Network for Context-Aware Recognition [1.049712834719005]
視覚認知に対処するために,生体脳の回路モチーフを取り入れることの効果に焦点をあてる。
私たちの畳み込みアーキテクチャは、人間の皮質と皮質下の流れの接続にインスパイアされています。
我々はコンテキスト認識をモデル化するための新しいプラグイン・アンド・プレイ・モジュールを提案する。
論文 参考訳(メタデータ) (2024-09-06T15:42:10Z) - A Review of Findings from Neuroscience and Cognitive Psychology as
Possible Inspiration for the Path to Artificial General Intelligence [0.0]
本論は,神経科学と認知心理学の手法を検討することによって,人工知能の探求に貢献することを目的とする。
深層学習モデルによって達成された印象的な進歩にもかかわらず、抽象的推論と因果的理解にはまだ欠点がある。
論文 参考訳(メタデータ) (2024-01-03T09:46:36Z) - Brain-Inspired Machine Intelligence: A Survey of
Neurobiologically-Plausible Credit Assignment [65.268245109828]
本稿では,神経生物学にインスパイアされた,あるいは動機付けられた人工ニューラルネットワークにおける信用割当を行うアルゴリズムについて検討する。
我々は、脳にインスパイアされた学習スキームを6つの一般的なファミリーにまとめ、これらを誤りのバックプロパゲーションの文脈で検討する。
本研究の成果は,神経ミメティックシステムとその構成的学習プロセスの今後の発展を促進することを目的としている。
論文 参考訳(メタデータ) (2023-12-01T05:20:57Z) - Bio-inspired spike-based Hippocampus and Posterior Parietal Cortex
models for robot navigation and environment pseudo-mapping [52.77024349608834]
本研究はスパイクに基づくロボットナビゲーションと環境擬似マッピングシステムを提案する。
海馬は環境状態マップの表現を担い、PPCは局所的な意思決定を担当している。
これはバイオインスパイアされた海馬記憶に基づく動的学習を用いた環境擬似マッピングシステムの最初の実装である。
論文 参考訳(メタデータ) (2023-05-22T10:20:34Z) - Attention: Marginal Probability is All You Need? [0.0]
我々は、注意機構のための代替ベイズ基盤を提案する。
機械学習において、どのように異なる注目アーキテクチャを統合するかを示す。
この研究が、より洗練された直感を注目アーキテクチャの重要な特性に導くことを願っています。
論文 参考訳(メタデータ) (2023-04-07T14:38:39Z) - Neuromorphic Computing and Sensing in Space [69.34740063574921]
神経型コンピュータチップは、生物学的脳の構造を模倣するように設計されている。
ニューロモルフィックデバイスの低消費電力とエネルギー効率に重点を置くことは、宇宙応用には最適である。
論文 参考訳(メタデータ) (2022-12-10T07:46:29Z) - Spike-based computational models of bio-inspired memories in the
hippocampal CA3 region on SpiNNaker [0.0]
完全機能海馬バイオインスパイア記憶のスパイクに基づく2つの計算モデルを開発した。
このモデルは、将来のスパイクベースの実装とアプリケーションへの道を開くかもしれない。
論文 参考訳(メタデータ) (2022-05-10T10:03:50Z) - Functional2Structural: Cross-Modality Brain Networks Representation
Learning [55.24969686433101]
脳ネットワーク上のグラフマイニングは、臨床表現型および神経変性疾患のための新しいバイオマーカーの発見を促進する可能性がある。
本稿では,Deep Signed Brain Networks (DSBN) と呼ばれる新しいグラフ学習フレームワークを提案する。
臨床表現型および神経変性疾患予測の枠組みを,2つの独立した公開データセットを用いて検証した。
論文 参考訳(メタデータ) (2022-05-06T03:45:36Z) - Cognitive architecture aided by working-memory for self-supervised
multi-modal humans recognition [54.749127627191655]
人間パートナーを認識する能力は、パーソナライズされた長期的な人間とロボットの相互作用を構築するための重要な社会的スキルです。
ディープラーニングネットワークは最先端の結果を達成し,そのような課題に対処するための適切なツールであることが実証された。
1つの解決策は、ロボットに自己スーパービジョンで直接の感覚データから学習させることである。
論文 参考訳(メタデータ) (2021-03-16T13:50:24Z) - Towards a Neural Model for Serial Order in Frontal Cortex: a Brain
Theory from Memory Development to Higher-Level Cognition [53.816853325427424]
そこで本研究では,未熟な前頭前野 (PFC) が側頭葉信号の階層的パターンを検出する主要な機能を利用していることを提案する。
我々の仮説では、PFCは順序パターンの形で時間的配列の階層構造を検出し、それらを脳の異なる部分で階層的に情報をインデックスするために利用する。
これにより、抽象的な知識を操作し、時間的に順序付けられた情報を計画するための言語対応の脳にツールを提供する。
論文 参考訳(メタデータ) (2020-05-22T14:29:51Z) - Brain-inspired self-organization with cellular neuromorphic computing
for multimodal unsupervised learning [0.0]
本稿では,自己組織マップとヘビアン様学習を用いた再突入理論に基づく脳刺激型ニューラルシステムを提案する。
システムトポロジがユーザによって固定されるのではなく,自己組織化によって学習されるような,いわゆるハードウェアの可塑性の獲得について述べる。
論文 参考訳(メタデータ) (2020-04-11T21:02:45Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。