論文の概要: Brain-inspired self-organization with cellular neuromorphic computing
for multimodal unsupervised learning
- arxiv url: http://arxiv.org/abs/2004.05488v3
- Date: Wed, 2 Sep 2020 17:10:21 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-14 10:09:46.399033
- Title: Brain-inspired self-organization with cellular neuromorphic computing
for multimodal unsupervised learning
- Title(参考訳): マルチモーダル非教師なし学習のための細胞ニューロモルフィックコンピューティングを用いた脳インスパイア自己組織化
- Authors: Lyes Khacef, Laurent Rodriguez, Benoit Miramond
- Abstract要約: 本稿では,自己組織マップとヘビアン様学習を用いた再突入理論に基づく脳刺激型ニューラルシステムを提案する。
システムトポロジがユーザによって固定されるのではなく,自己組織化によって学習されるような,いわゆるハードウェアの可塑性の獲得について述べる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Cortical plasticity is one of the main features that enable our ability to
learn and adapt in our environment. Indeed, the cerebral cortex self-organizes
itself through structural and synaptic plasticity mechanisms that are very
likely at the basis of an extremely interesting characteristic of the human
brain development: the multimodal association. In spite of the diversity of the
sensory modalities, like sight, sound and touch, the brain arrives at the same
concepts (convergence). Moreover, biological observations show that one
modality can activate the internal representation of another modality when both
are correlated (divergence). In this work, we propose the Reentrant
Self-Organizing Map (ReSOM), a brain-inspired neural system based on the
reentry theory using Self-Organizing Maps and Hebbian-like learning. We propose
and compare different computational methods for unsupervised learning and
inference, then quantify the gain of the ReSOM in a multimodal classification
task. The divergence mechanism is used to label one modality based on the
other, while the convergence mechanism is used to improve the overall accuracy
of the system. We perform our experiments on a constructed written/spoken
digits database and a DVS/EMG hand gestures database. The proposed model is
implemented on a cellular neuromorphic architecture that enables distributed
computing with local connectivity. We show the gain of the so-called hardware
plasticity induced by the ReSOM, where the system's topology is not fixed by
the user but learned along the system's experience through self-organization.
- Abstract(参考訳): 皮質の可塑性は、私たちの環境を学習し適応できる主要な特徴の1つです。
実際、大脳皮質は構造的およびシナプス的な可塑性機構を通じて自己組織し、それは非常に興味深い人間の脳の発達の特徴であるマルチモーダル・アソシエーション(multimodal association)に基づいている可能性が高い。
視覚、音、触覚といった感覚的モダリティの多様性にもかかわらず、脳は同じ概念(コンバージェンス)に到達します。
さらに、生物学的な観察により、一方のモダリティが他方のモダリティの内部表現を活性化できることが示される(ダイバージェンス)。
本研究では、自己組織化マップとヘビアン様学習を用いた再突入理論に基づく脳に触発された神経系である、Reentrant Self-Organizing Map (ReSOM)を提案する。
本研究では,教師なし学習と推論のための異なる計算手法を提案し,比較し,マルチモーダル分類タスクにおけるresomの利得を定量化する。
発散機構は一方のモダリティを他方に基づいてラベル付けし、収束機構はシステムの全体的な精度を改善するために使用される。
本研究では,DVS/EMGハンドジェスチャデータベースと構築した文字/音声桁データベースを用いて実験を行った。
提案モデルは,ローカル接続による分散コンピューティングを実現するセルラーニューロモルフィックアーキテクチャ上に実装されている。
システムのトポロジーはユーザによって固定されるのではなく、自己組織化を通じてシステムエクスペリエンスに沿って学習される、いわゆるハードウェア可塑性の獲得を示す。
関連論文リスト
- Brain-like Functional Organization within Large Language Models [58.93629121400745]
人間の脳は長い間人工知能(AI)の追求にインスピレーションを与えてきた
最近のニューロイメージング研究は、人工ニューラルネットワーク(ANN)の計算的表現と、人間の脳の刺激に対する神経反応との整合性の説得力のある証拠を提供する。
本研究では、人工ニューロンのサブグループと機能的脳ネットワーク(FBN)を直接結合することで、このギャップを埋める。
このフレームワークはANサブグループをFBNにリンクし、大きな言語モデル(LLM)内で脳に似た機能的組織を記述できる。
論文 参考訳(メタデータ) (2024-10-25T13:15:17Z) - Unsupervised representation learning with Hebbian synaptic and structural plasticity in brain-like feedforward neural networks [0.0]
教師なし表現学習が可能な脳様ニューラルネットワークモデルを導入,評価する。
このモデルは、一般的な機械学習ベンチマークのさまざまなセットでテストされた。
論文 参考訳(メタデータ) (2024-06-07T08:32:30Z) - Interpretable Spatio-Temporal Embedding for Brain Structural-Effective Network with Ordinary Differential Equation [56.34634121544929]
本研究では,まず動的因果モデルを用いて脳効果ネットワークを構築する。
次に、STE-ODE(Spatio-Temporal Embedding ODE)と呼ばれる解釈可能なグラフ学習フレームワークを導入する。
このフレームワークは、構造的および効果的なネットワーク間の動的相互作用を捉えることを目的とした、特異的に設計されたノード埋め込み層を含んでいる。
論文 参考訳(メタデータ) (2024-05-21T20:37:07Z) - MindBridge: A Cross-Subject Brain Decoding Framework [60.58552697067837]
脳の復号化は、獲得した脳信号から刺激を再構築することを目的としている。
現在、脳の復号化はモデルごとのオブジェクトごとのパラダイムに限られている。
我々は,1つのモデルのみを用いることで,オブジェクト間脳デコーディングを実現するMindBridgeを提案する。
論文 参考訳(メタデータ) (2024-04-11T15:46:42Z) - Brain-Inspired Machine Intelligence: A Survey of
Neurobiologically-Plausible Credit Assignment [65.268245109828]
本稿では,神経生物学にインスパイアされた,あるいは動機付けられた人工ニューラルネットワークにおける信用割当を行うアルゴリズムについて検討する。
我々は、脳にインスパイアされた学習スキームを6つの一般的なファミリーにまとめ、これらを誤りのバックプロパゲーションの文脈で検討する。
本研究の成果は,神経ミメティックシステムとその構成的学習プロセスの今後の発展を促進することを目的としている。
論文 参考訳(メタデータ) (2023-12-01T05:20:57Z) - A Study of Biologically Plausible Neural Network: The Role and
Interactions of Brain-Inspired Mechanisms in Continual Learning [13.041607703862724]
人間は絶えず変化する環境から情報を取得し、統合し、保持するのに優れていますが、人工ニューラルネットワーク(ANN)は破滅的な忘れ物を示します。
我々は、デイルの原理に従う排他的および抑制的ニューロンの集団を分離して構成する生物学的に妥当な枠組みを考察する。
次に,脳にインスパイアされた様々なメカニズムの役割と相互作用について包括的研究を行い,その内容は,疎密な非重複表現,ヘビアン学習,シナプス統合,学習イベントに伴う過去の活性化の再現などである。
論文 参考訳(メタデータ) (2023-04-13T16:34:12Z) - Grid-SD2E: A General Grid-Feedback in a System for Cognitive Learning [0.5221459608786241]
この研究は、より汎用的で堅牢なグリッドモジュールを作成する際に、グリッドセルから部分的にインスピレーションを受けている。
我々はベイジアン推論とともに対話的かつ自己強化型認知システムを構築した。
最小の計算ユニットが抽出され、脳内の1つのニューロンに類似している。
論文 参考訳(メタデータ) (2023-04-04T14:54:12Z) - Contrastive-Signal-Dependent Plasticity: Self-Supervised Learning in Spiking Neural Circuits [61.94533459151743]
この研究は、スパイキングネットワークのシナプスを調整するための神経生物学的に動機づけられたスキームを設計することの課題に対処する。
我々の実験シミュレーションは、繰り返しスパイクネットワークを訓練する際、他の生物学的に証明可能なアプローチに対して一貫した優位性を示す。
論文 参考訳(メタデータ) (2023-03-30T02:40:28Z) - Increasing Liquid State Machine Performance with Edge-of-Chaos Dynamics
Organized by Astrocyte-modulated Plasticity [0.0]
液体状態機械(LSM)は勾配のバックプロパゲーションなしで内部重量を調整する。
近年の知見は、アストロサイトがシナプスの可塑性と脳のダイナミクスを調節していることを示唆している。
本稿では, 自己組織的近接臨界力学を用いて, 性能の低いニューロン-アストロサイト液状状態機械 (NALSM) を提案する。
論文 参考訳(メタデータ) (2021-10-26T23:04:40Z) - Towards a Neural Model for Serial Order in Frontal Cortex: a Brain
Theory from Memory Development to Higher-Level Cognition [53.816853325427424]
そこで本研究では,未熟な前頭前野 (PFC) が側頭葉信号の階層的パターンを検出する主要な機能を利用していることを提案する。
我々の仮説では、PFCは順序パターンの形で時間的配列の階層構造を検出し、それらを脳の異なる部分で階層的に情報をインデックスするために利用する。
これにより、抽象的な知識を操作し、時間的に順序付けられた情報を計画するための言語対応の脳にツールを提供する。
論文 参考訳(メタデータ) (2020-05-22T14:29:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。