論文の概要: Learning Adjustment Sets from Observational and Limited Experimental
Data
- arxiv url: http://arxiv.org/abs/2005.08749v2
- Date: Tue, 17 Nov 2020 20:35:49 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-02 00:33:48.101130
- Title: Learning Adjustment Sets from Observational and Limited Experimental
Data
- Title(参考訳): 観測データおよび限定実験データからの学習調整セット
- Authors: Sofia Triantafillou and Gregory Cooper
- Abstract要約: 本研究では,大規模な観測データと限られた実験データを組み合わせて調整セットを同定する手法を提案する。
本手法は, 調整セットの同定に成功し, シミュレーションデータの因果効果推定を改善する。
- 参考スコア(独自算出の注目度): 9.028773906859541
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Estimating causal effects from observational data is not always possible due
to confounding. Identifying a set of appropriate covariates (adjustment set)
and adjusting for their influence can remove confounding bias; however, such a
set is typically not identifiable from observational data alone. Experimental
data do not have confounding bias, but are typically limited in sample size and
can therefore yield imprecise estimates. Furthermore, experimental data often
include a limited set of covariates, and therefore provide limited insight into
the causal structure of the underlying system. In this work we introduce a
method that combines large observational and limited experimental data to
identify adjustment sets and improve the estimation of causal effects. The
method identifies an adjustment set (if possible) by calculating the marginal
likelihood for the experimental data given observationally-derived prior
probabilities of potential adjustmen sets. In this way, the method can make
inferences that are not possible using only the conditional dependencies and
independencies in all the observational and experimental data. We show that the
method successfully identifies adjustment sets and improves causal effect
estimation in simulated data, and it can sometimes make additional inferences
when compared to state-of-the-art methods for combining experimental and
observational data.
- Abstract(参考訳): 観測データから因果効果を推定することは、必ずしも欠点のため不可能ではない。
適切な共変量の集合(調整集合)を同定し、その影響を調整すれば、共変バイアスを取り除くことができるが、そのような集合は通常観測データだけでは識別できない。
実験データは共起バイアスを持たないが、通常サンプルサイズに制限があり、したがって不正確な推定が得られる。
さらに、実験データは限られた共変量を含むことが多いため、基礎となるシステムの因果構造についての洞察は限られている。
本研究では,大規模な観測データと限られた実験データを組み合わせて調整セットを同定し,因果効果の推定を改善する手法を提案する。
この方法は、ポテンシャル調整器セットの観測による事前確率が与えられた実験データの限界確率を計算して(可能であれば)調整セットを特定する。
このようにして、この手法は全ての観測データおよび実験データで条件付き依存性と無依存のみを使用して、不可能となる推論をすることができる。
本手法は, 実験データと観測データを組み合わせた最新手法と比較して, 適応セットの同定に成功し, シミュレーションデータの因果効果推定を改善した。
関連論文リスト
- Assumption-Lean Post-Integrated Inference with Negative Control Outcomes [0.0]
負の制御結果を用いて遅延不均一性を調整する頑健なポストインテグレート推論(PII)手法を提案する。
提案手法は,予測された直接効果推定値,隠された仲介者,共同設立者,モデレーターまで拡張する。
提案された二重頑健な推定器は、最小の仮定と潜在的な不特定性の下で一貫性があり、効率的である。
論文 参考訳(メタデータ) (2024-10-07T12:52:38Z) - Approximating Counterfactual Bounds while Fusing Observational, Biased
and Randomised Data Sources [64.96984404868411]
我々は、複数の、偏見のある、観察的、介入的な研究からのデータを統合するという問題に対処する。
利用可能なデータの可能性は局所的な最大値を持たないことを示す。
次に、同じアプローチが複数のデータセットの一般的なケースにどのように対処できるかを示す。
論文 参考訳(メタデータ) (2023-07-31T11:28:24Z) - Falsification before Extrapolation in Causal Effect Estimation [6.715453431174765]
個体群における因果関係は、しばしば観測データを用いて推定される。
本稿では,偏りのある観測推定を拒否するメタアルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-09-27T21:47:23Z) - Generalizing experimental findings: identification beyond adjustments [2.5889737226898437]
ランダム化比較試験(RCT)の結果を,観測データを用いて対象集団に一般化することを目的としている。
実験結果が調整によって一般化できない事例を考察する。
この一般化は、do-calculusを適用することで導出できる他の識別戦略によっても可能であることを示す。
論文 参考訳(メタデータ) (2022-06-14T09:00:17Z) - Detecting hidden confounding in observational data using multiple
environments [0.81585306387285]
本論では, 隠れた接尾辞が存在する場合にのみ欠落する, 検証可能な条件不一致の理論について述べる。
ほとんどの場合、提案手法は隠れた共起の存在を正確に予測する。
論文 参考訳(メタデータ) (2022-05-27T12:20:09Z) - Combining Observational and Randomized Data for Estimating Heterogeneous
Treatment Effects [82.20189909620899]
不均一な治療効果を推定することは、多くの領域において重要な問題である。
現在、現存するほとんどの作品は観測データにのみ依存している。
本稿では、大量の観測データと少量のランダム化データを組み合わせることで、不均一な処理効果を推定する。
論文 参考訳(メタデータ) (2022-02-25T18:59:54Z) - Multi-Source Causal Inference Using Control Variates [81.57072928775509]
本稿では,複数のデータソースから因果効果を推定するアルゴリズムを提案する。
理論的には、これはATE推定値の分散を減少させる。
このフレームワークを結果選択バイアスの下で観測データからの推論に適用する。
論文 参考訳(メタデータ) (2021-03-30T21:20:51Z) - Efficient Causal Inference from Combined Observational and
Interventional Data through Causal Reductions [68.6505592770171]
因果効果を推定する際の主な課題の1つである。
そこで本研究では,任意の数の高次元潜入共創者を置き換える新たな因果還元法を提案する。
パラメータ化縮小モデルを観測データと介入データから共同で推定する学習アルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-03-08T14:29:07Z) - How and Why to Use Experimental Data to Evaluate Methods for
Observational Causal Inference [7.551130027327462]
ランダム化制御試験(OSRCT)の観察サンプリングを記述・解析する。
この手法は、処理効果の非偏見的な推定値で構築された観測データセットを作成するのに使用できる。
次に,37データセットに対して7つの因果推論手法を大規模に評価する。
論文 参考訳(メタデータ) (2020-10-06T21:44:01Z) - Provably Efficient Causal Reinforcement Learning with Confounded
Observational Data [135.64775986546505]
オフラインで収集されたデータセット(観測データ)を組み込んで、オンライン環境でのサンプル効率を改善する方法について検討する。
提案手法は,観測データを効率よく組み込んだ,分解された楽観的値反復 (DOVI) アルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-06-22T14:49:33Z) - Almost-Matching-Exactly for Treatment Effect Estimation under Network
Interference [73.23326654892963]
本研究では,観測ネットワーク上でユニットが接続されたランダム化実験から直接処理効果を回復するマッチング手法を提案する。
本手法は, 近傍グラフ内の一意部分グラフの個数にほぼ一致する。
論文 参考訳(メタデータ) (2020-03-02T15:21:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。