論文の概要: Entropy-Augmented Entropy-Regularized Reinforcement Learning and a
Continuous Path from Policy Gradient to Q-Learning
- arxiv url: http://arxiv.org/abs/2005.08844v2
- Date: Fri, 5 Jun 2020 17:21:40 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-01 23:04:57.170730
- Title: Entropy-Augmented Entropy-Regularized Reinforcement Learning and a
Continuous Path from Policy Gradient to Q-Learning
- Title(参考訳): エントロピー強化エントロピー強化強化学習と政策グラディエントからQラーニングへの継続的パス
- Authors: Donghoon Lee
- Abstract要約: エントロピー増強が改革され、目的関数に追加のエントロピー項を導入するモチベーションがもたらされる。
結果として、現在の政策からソフトマックスグレディ政策に補間しながら、単調に改善する政策がもたらされる。
- 参考スコア(独自算出の注目度): 5.185562073975834
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Entropy augmented to reward is known to soften the greedy argmax policy to
softmax policy. Entropy augmentation is reformulated and leads to a motivation
to introduce an additional entropy term to the objective function in the form
of KL-divergence to regularize optimization process. It results in a policy
which monotonically improves while interpolating from the current policy to the
softmax greedy policy. This policy is used to build a continuously
parameterized algorithm which optimize policy and Q-function simultaneously and
whose extreme limits correspond to policy gradient and Q-learning,
respectively. Experiments show that there can be a performance gain using an
intermediate algorithm.
- Abstract(参考訳): 報酬に加味されたエントロピーは、欲望のあるargmaxポリシーをsoftmaxポリシーに軟化させることで知られている。
エントロピー増強は再構成され、最適化プロセスを正すためにkl-divergenceという形で目的関数に追加のエントロピー項を導入する動機となる。
結果として、現在の政策からソフトマックスグレディ政策に補間しながら単調に改善する政策がもたらされる。
このポリシーは、ポリシーとq関数を同時に最適化し、それぞれポリシー勾配とq学習に対応する、連続的パラメータ化アルゴリズムを構築するために使用される。
実験により,中間アルゴリズムによる性能向上が示された。
関連論文リスト
- Deterministic Policy Gradient Primal-Dual Methods for Continuous-Space Constrained MDPs [82.34567890576423]
我々は,非漸近収束を伴う最適決定主義政策を求めるための決定主義的政策勾配原始双対法を開発した。
D-PGPDの一次-双対反復は、最適正則化原始-双対にサブ線形速度で収束することが証明された。
我々の知る限り、これは連続空間制約型MDPに対する決定論的ポリシー探索法を提案する最初の研究であると思われる。
論文 参考訳(メタデータ) (2024-08-19T14:11:04Z) - On the Global Convergence of Policy Gradient in Average Reward Markov
Decision Processes [50.68789924454235]
我々は、平均報酬マルコフ決定過程(MDP)の文脈における政策勾配の最初の有限時間大域収束解析を示す。
我々の分析によると、ポリシー勾配は、$Oleft(frac1Tright)$のサブリニアレートで最適ポリシーに収束し、$Oleft(log(T)right)$ regretに変換され、$T$は反復数を表す。
論文 参考訳(メタデータ) (2024-03-11T15:25:03Z) - Beyond Stationarity: Convergence Analysis of Stochastic Softmax Policy Gradient Methods [0.40964539027092917]
Markov Decision Processs (MDP) は、シーケンシャルな意思決定問題のモデリングと解決のための正式なフレームワークである。
実際、全てのパラメータは、動的プログラミングによって提案される固有の構造を無視して、同時に訓練される。
本稿では、動的プログラミングと動的ポリシー勾配というポリシー勾配の組み合わせを紹介し、パラメータを時間内に後方にトレーニングする。
論文 参考訳(メタデータ) (2023-10-04T09:21:01Z) - Last-Iterate Convergent Policy Gradient Primal-Dual Methods for
Constrained MDPs [107.28031292946774]
無限水平割引マルコフ決定過程(拘束型MDP)の最適ポリシの計算問題について検討する。
我々は, 最適制約付きポリシーに反復的に対応し, 非漸近収束性を持つ2つの単一スケールポリシーに基づく原始双対アルゴリズムを開発した。
我々の知る限り、この研究は制約付きMDPにおける単一時間スケールアルゴリズムの非漸近的な最後の収束結果となる。
論文 参考訳(メタデータ) (2023-06-20T17:27:31Z) - Acceleration in Policy Optimization [50.323182853069184]
我々は、楽観的かつ適応的な更新を通じて、政策改善のステップにフォレストを組み込むことにより、強化学習(RL)における政策最適化手法を加速するための統一パラダイムに向けて研究する。
我々は、楽観主義を、政策の将来行動の予測モデルとして定義し、適応性は、過度な予測や変化に対する遅延反応からエラーを軽減するために、即時かつ予測的な修正措置をとるものである。
我々は,メタグラディエント学習による適応型楽観的ポリシー勾配アルゴリズムを設計し,実証的なタスクにおいて,加速度に関連するいくつかの設計選択を実証的に強調する。
論文 参考訳(メタデータ) (2023-06-18T15:50:57Z) - Policy Gradient Algorithms Implicitly Optimize by Continuation [7.351769270728942]
我々は、政策段階的なアルゴリズムの探索は、目の前にある政策の回帰の継続であり、その回帰を最大化するよりも、政策は歴史に依存しているべきだと論じる。
論文 参考訳(メタデータ) (2023-05-11T14:50:20Z) - Maximum-Likelihood Inverse Reinforcement Learning with Finite-Time
Guarantees [56.848265937921354]
逆強化学習(IRL)は報酬関数と関連する最適ポリシーを回復することを目的としている。
IRLの多くのアルゴリズムは本質的にネスト構造を持つ。
我々は、報酬推定精度を損なわないIRLのための新しいシングルループアルゴリズムを開発した。
論文 参考訳(メタデータ) (2022-10-04T17:13:45Z) - Beyond the Policy Gradient Theorem for Efficient Policy Updates in
Actor-Critic Algorithms [10.356356383401566]
強化学習では、ある状態における最適な行動は、その後の状態における政策決定に依存する。
政策勾配定理は, 目標値に対する構造対称性のため, 未学習の遅い政策更新を規定する。
我々は、その欠陥を欠いたポリシー更新を導入し、古典的な仮定で$mathcalO(t-1)$で、グローバル最適性への収束の保証を証明した。
論文 参考訳(メタデータ) (2022-02-15T15:04:10Z) - Near Optimal Policy Optimization via REPS [33.992374484681704]
emphrelative entropy policy search (reps) は多くのシミュレーションと実世界のロボットドメインでポリシー学習に成功した。
勾配に基づく解法を用いる場合、REPSの性能には保証がない。
最適規則化ポリシーに好適な収束を維持するためのパラメータ更新を計算するために,基礎となる決定プロセスへの表現的アクセスを利用する手法を提案する。
論文 参考訳(メタデータ) (2021-03-17T16:22:59Z) - Softmax Policy Gradient Methods Can Take Exponential Time to Converge [60.98700344526674]
Softmax Policy gradient(PG)メソッドは、現代の強化学習におけるポリシー最適化の事実上の実装の1つです。
ソフトマックス PG 法は、$mathcalS|$ および $frac11-gamma$ の観点から指数時間で収束できることを実証する。
論文 参考訳(メタデータ) (2021-02-22T18:56:26Z) - Fast Global Convergence of Natural Policy Gradient Methods with Entropy
Regularization [44.24881971917951]
自然政策勾配法(NPG)は、最も広く使われている政策最適化アルゴリズムの一つである。
我々は,ソフトマックスパラメータ化の下で,エントロピー規則化NPG法に対する収束保証を開発する。
この結果から, エントロピー正則化の役割を浮き彫りにした。
論文 参考訳(メタデータ) (2020-07-13T17:58:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。