論文の概要: Deterministic Policy Gradient Primal-Dual Methods for Continuous-Space Constrained MDPs
- arxiv url: http://arxiv.org/abs/2408.10015v1
- Date: Mon, 19 Aug 2024 14:11:04 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-20 16:03:38.458063
- Title: Deterministic Policy Gradient Primal-Dual Methods for Continuous-Space Constrained MDPs
- Title(参考訳): 連続空間制約型MDPに対する決定論的ポリシー勾配法
- Authors: Sergio Rozada, Dongsheng Ding, Antonio G. Marques, Alejandro Ribeiro,
- Abstract要約: 我々は,非漸近収束を伴う最適決定主義政策を求めるための決定主義的政策勾配原始双対法を開発した。
D-PGPDの一次-双対反復は、最適正則化原始-双対にサブ線形速度で収束することが証明された。
我々の知る限り、これは連続空間制約型MDPに対する決定論的ポリシー探索法を提案する最初の研究であると思われる。
- 参考スコア(独自算出の注目度): 82.34567890576423
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We study the problem of computing deterministic optimal policies for constrained Markov decision processes (MDPs) with continuous state and action spaces, which are widely encountered in constrained dynamical systems. Designing deterministic policy gradient methods in continuous state and action spaces is particularly challenging due to the lack of enumerable state-action pairs and the adoption of deterministic policies, hindering the application of existing policy gradient methods for constrained MDPs. To this end, we develop a deterministic policy gradient primal-dual method to find an optimal deterministic policy with non-asymptotic convergence. Specifically, we leverage regularization of the Lagrangian of the constrained MDP to propose a deterministic policy gradient primal-dual (D-PGPD) algorithm that updates the deterministic policy via a quadratic-regularized gradient ascent step and the dual variable via a quadratic-regularized gradient descent step. We prove that the primal-dual iterates of D-PGPD converge at a sub-linear rate to an optimal regularized primal-dual pair. We instantiate D-PGPD with function approximation and prove that the primal-dual iterates of D-PGPD converge at a sub-linear rate to an optimal regularized primal-dual pair, up to a function approximation error. Furthermore, we demonstrate the effectiveness of our method in two continuous control problems: robot navigation and fluid control. To the best of our knowledge, this appears to be the first work that proposes a deterministic policy search method for continuous-space constrained MDPs.
- Abstract(参考訳): 本稿では,制約付きマルコフ決定過程(MDP)に対する決定論的最適ポリシーを,制約付き力学系で広く見られる連続状態と行動空間を用いて計算する問題について検討する。
連続状態および行動空間における決定論的政策勾配法の設計は、エネルブル状態-作用ペアの欠如と決定論的政策の導入により、既存の政策勾配法を制約されたMDPに適用することを妨げるため、特に困難である。
この目的のために、非漸近収束を伴う最適決定主義政策を求めるための決定論的政策勾配原始双対法を開発した。
具体的には,制約付きMDPのラグランジアンを正規化して,2次正規化勾配上昇ステップと2次正規化勾配降下ステップによって決定論的ポリシーを更新するD-PGPDアルゴリズムを提案する。
D-PGPDの一次-双対反復は、最適正則化原始-双対にサブ線形速度で収束することが証明された。
関数近似を用いて D-PGPD をインスタンス化し、D-PGPD の原始-双対反復が、関数近似誤差まで、最適に正則化された原始-双対に収束することを証明した。
さらに,ロボットナビゲーションと流体制御の2つの連続制御問題において,本手法の有効性を示す。
我々の知る限り、これは連続空間制約型MDPに対する決定論的ポリシー探索法を提案する最初の研究であると思われる。
関連論文リスト
- Last-Iterate Global Convergence of Policy Gradients for Constrained Reinforcement Learning [62.81324245896717]
我々はC-PGと呼ばれる探索非依存のアルゴリズムを導入し、このアルゴリズムは(弱)勾配支配仮定の下でのグローバルな最終点収束を保証する。
制約付き制御問題に対して,我々のアルゴリズムを数値的に検証し,それらを最先端のベースラインと比較する。
論文 参考訳(メタデータ) (2024-07-15T14:54:57Z) - Two-Stage ML-Guided Decision Rules for Sequential Decision Making under Uncertainty [55.06411438416805]
SDMU (Sequential Decision Making Under Uncertainty) は、エネルギー、金融、サプライチェーンといった多くの領域において、ユビキタスである。
いくつかのSDMUは、自然にマルチステージ問題(MSP)としてモデル化されているが、結果として得られる最適化は、計算の観点からは明らかに困難である。
本稿では,2段階の一般決定規則(TS-GDR)を導入し,線形関数を超えて政策空間を一般化する手法を提案する。
TS-GDRの有効性は、TS-LDR(Two-Stage Deep Decision Rules)と呼ばれるディープリカレントニューラルネットワークを用いたインスタンス化によって実証される。
論文 参考訳(メタデータ) (2024-05-23T18:19:47Z) - Double Duality: Variational Primal-Dual Policy Optimization for
Constrained Reinforcement Learning [132.7040981721302]
本研究では,訪問尺度の凸関数を最小化することを目的として,制約付き凸決定プロセス(MDP)について検討する。
制約付き凸MDPの設計アルゴリズムは、大きな状態空間を扱うなど、いくつかの課題に直面している。
論文 参考訳(メタデータ) (2024-02-16T16:35:18Z) - Fast Policy Learning for Linear Quadratic Control with Entropy
Regularization [10.771650397337366]
本稿では,レギュラー化政策勾配 (RPG) と反復政策最適化 (IPO) の2つの新しい政策学習手法を提案し,分析する。
正確な政策評価にアクセスできると仮定すると、どちらの手法も正規化されたLQCの最適ポリシーを見つける際に線形に収束することが証明される。
論文 参考訳(メタデータ) (2023-11-23T19:08:39Z) - Last-Iterate Convergent Policy Gradient Primal-Dual Methods for
Constrained MDPs [107.28031292946774]
無限水平割引マルコフ決定過程(拘束型MDP)の最適ポリシの計算問題について検討する。
我々は, 最適制約付きポリシーに反復的に対応し, 非漸近収束性を持つ2つの単一スケールポリシーに基づく原始双対アルゴリズムを開発した。
我々の知る限り、この研究は制約付きMDPにおける単一時間スケールアルゴリズムの非漸近的な最後の収束結果となる。
論文 参考訳(メタデータ) (2023-06-20T17:27:31Z) - High-probability sample complexities for policy evaluation with linear function approximation [88.87036653258977]
本研究では,2つの広く利用されている政策評価アルゴリズムに対して,最適線形係数の予め定義された推定誤差を保証するために必要なサンプル複素量について検討する。
高確率収束保証に縛られた最初のサンプル複雑性を確立し、許容レベルへの最適依存を実現する。
論文 参考訳(メタデータ) (2023-05-30T12:58:39Z) - A Policy Gradient Method for Confounded POMDPs [7.75007282943125]
オフライン環境下での連続状態と観測空間を持つ部分観測可能マルコフ決定過程(POMDP)の整合化のためのポリシー勾配法を提案する。
まず、オフラインデータを用いて、POMDPの履歴依存ポリシー勾配を非パラメトリックに推定するために、新しい識別結果を確立する。
論文 参考訳(メタデータ) (2023-05-26T16:48:05Z) - Convergence and sample complexity of natural policy gradient primal-dual methods for constrained MDPs [21.347689976296834]
我々は、割引された最適レート問題を解くために、自然政策勾配法を用いる。
また、2つのサンプルベースNPG-PDアルゴリズムに対して収束と有限サンプル保証を提供する。
論文 参考訳(メタデータ) (2022-06-06T04:28:04Z) - Fast Global Convergence of Natural Policy Gradient Methods with Entropy
Regularization [44.24881971917951]
自然政策勾配法(NPG)は、最も広く使われている政策最適化アルゴリズムの一つである。
我々は,ソフトマックスパラメータ化の下で,エントロピー規則化NPG法に対する収束保証を開発する。
この結果から, エントロピー正則化の役割を浮き彫りにした。
論文 参考訳(メタデータ) (2020-07-13T17:58:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。