論文の概要: Deep Snow: Synthesizing Remote Sensing Imagery with Generative
Adversarial Nets
- arxiv url: http://arxiv.org/abs/2005.08892v1
- Date: Mon, 18 May 2020 17:05:00 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-01 23:20:35.067683
- Title: Deep Snow: Synthesizing Remote Sensing Imagery with Generative
Adversarial Nets
- Title(参考訳): Deep Snow: 生成する逆数ネットによるリモートセンシング画像の合成
- Authors: Christopher X. Ren, Amanda Ziemann, James Theiler, Alice M. S. Durieux
- Abstract要約: GAN(Generative Adversarial Network)は、リモートセンシング画像における現実的な広汎な変化を生成するために用いられる。
生成画像と実画像の深い埋め込みに基づく変換品質指標について検討する。
- 参考スコア(独自算出の注目度): 0.5249805590164901
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this work we demonstrate that generative adversarial networks (GANs) can
be used to generate realistic pervasive changes in remote sensing imagery, even
in an unpaired training setting. We investigate some transformation quality
metrics based on deep embedding of the generated and real images which enable
visualization and understanding of the training dynamics of the GAN, and may
provide a useful measure in terms of quantifying how distinguishable the
generated images are from real images. We also identify some artifacts
introduced by the GAN in the generated images, which are likely to contribute
to the differences seen between the real and generated samples in the deep
embedding feature space even in cases where the real and generated samples
appear perceptually similar.
- Abstract(参考訳): 本研究では,非ペアトレーニング環境においても,リモートセンシング画像の現実的な広汎性変化を生成するために,gans(generative adversarial network)が利用可能であることを実証する。
本稿では、生成画像と実画像の深い埋め込みに基づく変換品質指標について検討し、GANのトレーニングダイナミクスの可視化と理解を可能にし、生成画像が実画像とどの程度区別可能であるかの定量化に有用な指標を提供する。
また,生成した画像にganが導入したアーティファクトを識別することで,実際のサンプルと生成したサンプルが知覚的に類似している場合であっても,深層埋め込み特徴空間における実サンプルと生成サンプルの差異に寄与する可能性が示唆された。
関連論文リスト
- ASAP: Interpretable Analysis and Summarization of AI-generated Image Patterns at Scale [20.12991230544801]
生成画像モデルは、現実的な画像を生成するための有望な技術として登場してきた。
ユーザーがAI生成画像のパターンを効果的に識別し理解できるようにするための需要が高まっている。
我々はAI生成画像の異なるパターンを自動的に抽出する対話型可視化システムASAPを開発した。
論文 参考訳(メタデータ) (2024-04-03T18:20:41Z) - Rethinking the Up-Sampling Operations in CNN-based Generative Network
for Generalizable Deepfake Detection [86.97062579515833]
我々は、アップサンプリング操作から生じる一般化された構造的アーティファクトをキャプチャし、特徴付ける手段として、NPR(Neighboring Pixel Relationships)の概念を紹介した。
tft28の異なる生成モデルによって生成されたサンプルを含む、オープンワールドデータセット上で包括的な分析を行う。
この分析は、新しい最先端のパフォーマンスを確立し、既存の手法よりも優れたtft11.6%の向上を示している。
論文 参考訳(メタデータ) (2023-12-16T14:27:06Z) - In-Domain GAN Inversion for Faithful Reconstruction and Editability [132.68255553099834]
ドメイン誘導型ドメイン正規化とエンコーダで構成されたドメイン内GANインバージョンを提案し、事前学習されたGANモデルのネイティブ潜在空間における反転コードを正規化する。
エンコーダ構造,開始反転点,および逆パラメータ空間の効果を総合的に解析し,再構成品質と編集特性とのトレードオフを観察する。
論文 参考訳(メタデータ) (2023-09-25T08:42:06Z) - Joint Learning of Deep Texture and High-Frequency Features for
Computer-Generated Image Detection [24.098604827919203]
本稿では,CG画像検出のための深いテクスチャと高周波特徴を有する共同学習戦略を提案する。
セマンティックセグメンテーションマップを生成して、アフィン変換操作を誘導する。
原画像と原画像の高周波成分の組み合わせを、注意機構を備えたマルチブランチニューラルネットワークに供給する。
論文 参考訳(メタデータ) (2022-09-07T17:30:40Z) - Ensembling with Deep Generative Views [72.70801582346344]
生成モデルは、色やポーズの変化などの現実世界の変動を模倣する人工画像の「ビュー」を合成することができる。
そこで本研究では, 画像分類などの下流解析作業において, 実画像に適用できるかどうかを検討する。
StyleGAN2を再生増強の源として使用し、顔の属性、猫の顔、車を含む分類タスクについてこの設定を調査します。
論文 参考訳(メタデータ) (2021-04-29T17:58:35Z) - Unsupervised Discovery of Disentangled Manifolds in GANs [74.24771216154105]
解釈可能な生成プロセスは、様々な画像編集アプリケーションに有用である。
本稿では,任意の学習された生成逆数ネットワークが与えられた潜在空間における解釈可能な方向を検出する枠組みを提案する。
論文 参考訳(メタデータ) (2020-11-24T02:18:08Z) - CNN Detection of GAN-Generated Face Images based on Cross-Band
Co-occurrences Analysis [34.41021278275805]
最終世代のGANモデルでは、自然と視覚的に区別できない合成画像を生成することができる。
本稿では、スペクトル帯域間の不整合を利用して、自然画像とGAN生成物を区別する手法を提案する。
論文 参考訳(メタデータ) (2020-07-25T10:55:04Z) - Generative Hierarchical Features from Synthesizing Images [65.66756821069124]
画像合成の学習は、広範囲のアプリケーションにまたがって一般化可能な顕著な階層的な視覚的特徴をもたらす可能性があることを示す。
生成的階層的特徴(Generative Hierarchical Feature, GH-Feat)と呼ばれるエンコーダが生成する視覚的特徴は、生成的タスクと識別的タスクの両方に強い伝達性を有する。
論文 参考訳(メタデータ) (2020-07-20T18:04:14Z) - InterFaceGAN: Interpreting the Disentangled Face Representation Learned
by GANs [73.27299786083424]
我々は、最先端のGANモデルによって学習された不整合顔表現を解釈するInterFaceGANというフレームワークを提案する。
まず、GANは潜在空間の線型部分空間で様々な意味学を学ぶ。
次に、異なる意味論間の相関関係について詳細な研究を行い、部分空間射影を通してそれらをよりよく解離させる。
論文 参考訳(メタデータ) (2020-05-18T18:01:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。