Basal Glucose Control in Type 1 Diabetes using Deep Reinforcement
Learning: An In Silico Validation
- URL: http://arxiv.org/abs/2005.09059v1
- Date: Mon, 18 May 2020 20:13:16 GMT
- Title: Basal Glucose Control in Type 1 Diabetes using Deep Reinforcement
Learning: An In Silico Validation
- Authors: Taiyu Zhu, Kezhi Li, Pau Herrero, Pantelis Georgiou
- Abstract summary: We propose a novel deep reinforcement learning model for single-hormone (insulin) and dual-hormone (insulin and glucagon) delivery.
In the adult cohort, percentage time in target range improved from 77.6% to 80.9% with single-hormone control.
In the adolescent cohort, percentage time in target range improved from 55.5% to 65.9% with single-hormone control.
- Score: 16.93692520921499
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: People with Type 1 diabetes (T1D) require regular exogenous infusion of
insulin to maintain their blood glucose concentration in a therapeutically
adequate target range. Although the artificial pancreas and continuous glucose
monitoring have been proven to be effective in achieving closed-loop control,
significant challenges still remain due to the high complexity of glucose
dynamics and limitations in the technology. In this work, we propose a novel
deep reinforcement learning model for single-hormone (insulin) and dual-hormone
(insulin and glucagon) delivery. In particular, the delivery strategies are
developed by double Q-learning with dilated recurrent neural networks. For
designing and testing purposes, the FDA-accepted UVA/Padova Type 1 simulator
was employed. First, we performed long-term generalized training to obtain a
population model. Then, this model was personalized with a small data-set of
subject-specific data. In silico results show that the single and dual-hormone
delivery strategies achieve good glucose control when compared to a standard
basal-bolus therapy with low-glucose insulin suspension. Specifically, in the
adult cohort (n=10), percentage time in target range [70, 180] mg/dL improved
from 77.6% to 80.9% with single-hormone control, and to $85.6\%$ with
dual-hormone control. In the adolescent cohort (n=10), percentage time in
target range improved from 55.5% to 65.9% with single-hormone control, and to
78.8% with dual-hormone control. In all scenarios, a significant decrease in
hypoglycemia was observed. These results show that the use of deep
reinforcement learning is a viable approach for closed-loop glucose control in
T1D.
Related papers
- From Glucose Patterns to Health Outcomes: A Generalizable Foundation Model for Continuous Glucose Monitor Data Analysis [50.80532910808962]
We present GluFormer, a generative foundation model on biomedical temporal data based on a transformer architecture.
GluFormer generalizes to 15 different external datasets, including 4936 individuals across 5 different geographical regions.
It can also predict onset of future health outcomes even 4 years in advance.
arXiv Detail & Related papers (2024-08-20T13:19:06Z) - Attention Networks for Personalized Mealtime Insulin Dosing in People with Type 1 Diabetes [0.30723404270319693]
We demonstrate how a reinforcement learning agent, employing a self-attention encoder network, can effectively mimic and enhance this intuitive process.
Results reveal a significant reduction in glycemic risk, from 16.5 to 9.6 in scenarios using sensor-augmented pump and from 9.1 to 6.7 in scenarios using automated insulin delivery.
arXiv Detail & Related papers (2024-06-18T17:59:32Z) - Using Pre-training and Interaction Modeling for ancestry-specific disease prediction in UK Biobank [69.90493129893112]
Recent genome-wide association studies (GWAS) have uncovered the genetic basis of complex traits, but show an under-representation of non-European descent individuals.
Here, we assess whether we can improve disease prediction across diverse ancestries using multiomic data.
arXiv Detail & Related papers (2024-04-26T16:39:50Z) - Learning to diagnose cirrhosis from radiological and histological labels
with joint self and weakly-supervised pretraining strategies [62.840338941861134]
We propose to leverage transfer learning from large datasets annotated by radiologists, to predict the histological score available on a small annex dataset.
We compare different pretraining methods, namely weakly-supervised and self-supervised ones, to improve the prediction of the cirrhosis.
This method outperforms the baseline classification of the METAVIR score, reaching an AUC of 0.84 and a balanced accuracy of 0.75.
arXiv Detail & Related papers (2023-02-16T17:06:23Z) - Temporal patterns in insulin needs for Type 1 diabetes [0.0]
Type 1 Diabetes (T1D) is a chronic condition where the body produces little or no insulin.
Finding the right insulin dose and time remains a complex, challenging and as yet unsolved control task.
In this study, we use the OpenAPS Data Commons dataset to discover temporal patterns in insulin need driven by well-known factors.
arXiv Detail & Related papers (2022-11-14T14:19:50Z) - Building Brains: Subvolume Recombination for Data Augmentation in Large
Vessel Occlusion Detection [56.67577446132946]
A large training data set is required for a standard deep learning-based model to learn this strategy from data.
We propose an augmentation method that generates artificial training samples by recombining vessel tree segmentations of the hemispheres from different patients.
In line with the augmentation scheme, we use a 3D-DenseNet fed with task-specific input, fostering a side-by-side comparison between the hemispheres.
arXiv Detail & Related papers (2022-05-05T10:31:57Z) - Offline Reinforcement Learning for Safer Blood Glucose Control in People
with Type 1 Diabetes [1.1859913430860336]
Online reinforcement learning (RL) has been utilised as a method for further enhancing glucose control in diabetes devices.
This paper examines the utility of BCQ, CQL and TD3-BC in managing the blood glucose of the 30 virtual patients available within the FDA-approved UVA/Padova glucose dynamics simulator.
offline RL can significantly increase time in the healthy blood glucose range from 61.6 +- 0.3% to 65.3 +/- 0.5% when compared to the strongest state-of-art baseline.
arXiv Detail & Related papers (2022-04-07T11:52:12Z) - Deep Reinforcement Learning for Closed-Loop Blood Glucose Control [12.989855325491163]
We develop reinforcement learning techniques for automated blood glucose control.
On over 2.1 million hours of data from 30 simulated patients, our RL approach outperforms baseline control algorithms.
arXiv Detail & Related papers (2020-09-18T20:15:02Z) - Segmentation of the Myocardium on Late-Gadolinium Enhanced MRI based on
2.5 D Residual Squeeze and Excitation Deep Learning Model [55.09533240649176]
The aim of this work is to develop an accurate automatic segmentation method based on deep learning models for the myocardial borders on LGE-MRI.
A total number of 320 exams (with a mean number of 6 slices per exam) were used for training and 28 exams used for testing.
The performance analysis of the proposed ensemble model in the basal and middle slices was similar as compared to intra-observer study and slightly lower at apical slices.
arXiv Detail & Related papers (2020-05-27T20:44:38Z) - Machine learning for the diagnosis of early stage diabetes using
temporal glucose profiles [0.20072624123275526]
Diabetes is a chronic disease that has a long latent period that complicates detection of the disease at an early stage.
We propose to use machine learning to detect the subtle change in the temporal pattern of glucose concentration.
Multi-layered perceptrons, convolutional neural networks, and recurrent neural networks all identified the degree of insulin resistance with high accuracy above $85%$.
arXiv Detail & Related papers (2020-05-18T13:31:12Z) - Short Term Blood Glucose Prediction based on Continuous Glucose
Monitoring Data [53.01543207478818]
This study explores the use of Continuous Glucose Monitoring (CGM) data as input for digital decision support tools.
We investigate how Recurrent Neural Networks (RNNs) can be used for Short Term Blood Glucose (STBG) prediction.
arXiv Detail & Related papers (2020-02-06T16:39:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.