Attention Networks for Personalized Mealtime Insulin Dosing in People with Type 1 Diabetes
- URL: http://arxiv.org/abs/2406.14579v1
- Date: Tue, 18 Jun 2024 17:59:32 GMT
- Title: Attention Networks for Personalized Mealtime Insulin Dosing in People with Type 1 Diabetes
- Authors: Anas El Fathi, Elliott Pryor, Marc D. Breton,
- Abstract summary: We demonstrate how a reinforcement learning agent, employing a self-attention encoder network, can effectively mimic and enhance this intuitive process.
Results reveal a significant reduction in glycemic risk, from 16.5 to 9.6 in scenarios using sensor-augmented pump and from 9.1 to 6.7 in scenarios using automated insulin delivery.
- Score: 0.30723404270319693
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Calculating mealtime insulin doses poses a significant challenge for individuals with Type 1 Diabetes (T1D). Doses should perfectly compensate for expected post-meal glucose excursions, requiring a profound understanding of the individual's insulin sensitivity and the meal macronutrients'. Usually, people rely on intuition and experience to develop this understanding. In this work, we demonstrate how a reinforcement learning agent, employing a self-attention encoder network, can effectively mimic and enhance this intuitive process. Trained on 80 virtual subjects from the FDA-approved UVA/Padova T1D adult cohort and tested on twenty, self-attention demonstrates superior performance compared to other network architectures. Results reveal a significant reduction in glycemic risk, from 16.5 to 9.6 in scenarios using sensor-augmented pump and from 9.1 to 6.7 in scenarios using automated insulin delivery. This new paradigm bypasses conventional therapy parameters, offering the potential to simplify treatment and promising improved quality of life and glycemic outcomes for people with T1D.
Related papers
- From Glucose Patterns to Health Outcomes: A Generalizable Foundation Model for Continuous Glucose Monitor Data Analysis [50.80532910808962]
We present GluFormer, a generative foundation model on biomedical temporal data based on a transformer architecture.
GluFormer generalizes to 15 different external datasets, including 4936 individuals across 5 different geographical regions.
It can also predict onset of future health outcomes even 4 years in advance.
arXiv Detail & Related papers (2024-08-20T13:19:06Z) - NutritionVerse-Direct: Exploring Deep Neural Networks for Multitask Nutrition Prediction from Food Images [63.314702537010355]
Self-reporting methods are often inaccurate and suffer from substantial bias.
Recent work has explored using computer vision prediction systems to predict nutritional information from food images.
This paper aims to enhance the efficacy of dietary intake estimation by leveraging various neural network architectures.
arXiv Detail & Related papers (2024-05-13T14:56:55Z) - Physical formula enhanced multi-task learning for pharmacokinetics prediction [54.13787789006417]
A major challenge for AI-driven drug discovery is the scarcity of high-quality data.
We develop a formula enhanced mul-ti-task learning (PEMAL) method that predicts four key parameters of pharmacokinetics simultaneously.
Our experiments reveal that PEMAL significantly lowers the data demand, compared to typical Graph Neural Networks.
arXiv Detail & Related papers (2024-04-16T07:42:55Z) - Using Reinforcement Learning to Simplify Mealtime Insulin Dosing for
People with Type 1 Diabetes: In-Silico Experiments [0.40792653193642503]
People with type 1 diabetes (T1D) struggle to calculate the optimal insulin dose at mealtime.
We propose an RL agent that recommends the optimal meal-accompanying insulin dose corresponding to a qualitative meal (QM) strategy.
arXiv Detail & Related papers (2023-09-17T01:34:02Z) - An Ensemble Learning Approach for Exercise Detection in Type 1 Diabetes
Patients [9.491537214222756]
We propose an ensemble learning framework that combines a data-driven physiological model and a Siamese network to leverage multiple physiological signal streams for exercise detection.
Our approach achieves a true positive rate for exercise detection of 86.4% and a true negative rate of 99.1%, outperforming state-of-the-art solutions.
arXiv Detail & Related papers (2023-05-11T07:28:40Z) - Learning to diagnose cirrhosis from radiological and histological labels
with joint self and weakly-supervised pretraining strategies [62.840338941861134]
We propose to leverage transfer learning from large datasets annotated by radiologists, to predict the histological score available on a small annex dataset.
We compare different pretraining methods, namely weakly-supervised and self-supervised ones, to improve the prediction of the cirrhosis.
This method outperforms the baseline classification of the METAVIR score, reaching an AUC of 0.84 and a balanced accuracy of 0.75.
arXiv Detail & Related papers (2023-02-16T17:06:23Z) - Temporal patterns in insulin needs for Type 1 diabetes [0.0]
Type 1 Diabetes (T1D) is a chronic condition where the body produces little or no insulin.
Finding the right insulin dose and time remains a complex, challenging and as yet unsolved control task.
In this study, we use the OpenAPS Data Commons dataset to discover temporal patterns in insulin need driven by well-known factors.
arXiv Detail & Related papers (2022-11-14T14:19:50Z) - Building Brains: Subvolume Recombination for Data Augmentation in Large
Vessel Occlusion Detection [56.67577446132946]
A large training data set is required for a standard deep learning-based model to learn this strategy from data.
We propose an augmentation method that generates artificial training samples by recombining vessel tree segmentations of the hemispheres from different patients.
In line with the augmentation scheme, we use a 3D-DenseNet fed with task-specific input, fostering a side-by-side comparison between the hemispheres.
arXiv Detail & Related papers (2022-05-05T10:31:57Z) - Enhancing Food Intake Tracking in Long-Term Care with Automated Food
Imaging and Nutrient Intake Tracking (AFINI-T) Technology [71.37011431958805]
Half of long-term care (LTC) residents are malnourished increasing hospitalization, mortality, morbidity, with lower quality of life.
This paper presents the automated food imaging and nutrient intake tracking (AFINI-T) technology designed for LTC.
arXiv Detail & Related papers (2021-12-08T22:25:52Z) - Deep Reinforcement Learning for Closed-Loop Blood Glucose Control [12.989855325491163]
We develop reinforcement learning techniques for automated blood glucose control.
On over 2.1 million hours of data from 30 simulated patients, our RL approach outperforms baseline control algorithms.
arXiv Detail & Related papers (2020-09-18T20:15:02Z) - Basal Glucose Control in Type 1 Diabetes using Deep Reinforcement
Learning: An In Silico Validation [16.93692520921499]
We propose a novel deep reinforcement learning model for single-hormone (insulin) and dual-hormone (insulin and glucagon) delivery.
In the adult cohort, percentage time in target range improved from 77.6% to 80.9% with single-hormone control.
In the adolescent cohort, percentage time in target range improved from 55.5% to 65.9% with single-hormone control.
arXiv Detail & Related papers (2020-05-18T20:13:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.