Insulin Resistance Prediction From Wearables and Routine Blood Biomarkers
- URL: http://arxiv.org/abs/2505.03784v1
- Date: Wed, 30 Apr 2025 16:10:20 GMT
- Title: Insulin Resistance Prediction From Wearables and Routine Blood Biomarkers
- Authors: Ahmed A. Metwally, A. Ali Heydari, Daniel McDuff, Alexandru Solot, Zeinab Esmaeilpour, Anthony Z Faranesh, Menglian Zhou, David B. Savage, Conor Heneghan, Shwetak Patel, Cathy Speed, Javier L. Prieto,
- Abstract summary: We remotely recruited the largest dataset to date across the US to study insulin resistance.<n>Deep neural network models were developed to predict insulin resistance based on readily available digital and blood biomarkers.<n>Model showed 93% sensitivity and 95% adjusted specificity in obese and sedentary participants.
- Score: 44.735350554750916
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Insulin resistance, a precursor to type 2 diabetes, is characterized by impaired insulin action in tissues. Current methods for measuring insulin resistance, while effective, are expensive, inaccessible, not widely available and hinder opportunities for early intervention. In this study, we remotely recruited the largest dataset to date across the US to study insulin resistance (N=1,165 participants, with median BMI=28 kg/m2, age=45 years, HbA1c=5.4%), incorporating wearable device time series data and blood biomarkers, including the ground-truth measure of insulin resistance, homeostatic model assessment for insulin resistance (HOMA-IR). We developed deep neural network models to predict insulin resistance based on readily available digital and blood biomarkers. Our results show that our models can predict insulin resistance by combining both wearable data and readily available blood biomarkers better than either of the two data sources separately (R2=0.5, auROC=0.80, Sensitivity=76%, and specificity 84%). The model showed 93% sensitivity and 95% adjusted specificity in obese and sedentary participants, a subpopulation most vulnerable to developing type 2 diabetes and who could benefit most from early intervention. Rigorous evaluation of model performance, including interpretability, and robustness, facilitates generalizability across larger cohorts, which is demonstrated by reproducing the prediction performance on an independent validation cohort (N=72 participants). Additionally, we demonstrated how the predicted insulin resistance can be integrated into a large language model agent to help understand and contextualize HOMA-IR values, facilitating interpretation and safe personalized recommendations. This work offers the potential for early detection of people at risk of type 2 diabetes and thereby facilitate earlier implementation of preventative strategies.
Related papers
- AI-driven Prediction of Insulin Resistance in Normal Populations: Comparing Models and Criteria [12.96699656980563]
Insulin resistance (IR) is a key precursor to diabetes and a significant risk factor for cardiovascular disease.<n>We developed a simple AI model using only fasting blood glucose to predict IR in non-diabetic populations.<n>Data from the NHANES (1999-2020) and CHARLS studies were used for model training and validation.<n>CatBoost algorithm achieved AUC values of 0.8596 (HOMA-IR) and 0.7777 (TyG index) in NHANES, with an external AUC of 0.7442 for TyG.<n>For METS-IR prediction, the model achieved AUC values of 0.9731 (internal
arXiv Detail & Related papers (2025-03-07T03:32:52Z) - From Glucose Patterns to Health Outcomes: A Generalizable Foundation Model for Continuous Glucose Monitor Data Analysis [47.23780364438969]
We present GluFormer, a generative foundation model for CGM data that learns nuanced glycemic patterns and translates them into predictive representations of metabolic health.<n>GluFormer generalizes to 19 external cohorts spanning different ethnicities and ages, 5 countries, 8 CGM devices, and diverse pathophysiological states.<n>In a longitudinal study of 580 adults with CGM data and 12-year follow-up, GluFormer identifies individuals at elevated risk of developing diabetes more effectively than blood HbA1C%.
arXiv Detail & Related papers (2024-08-20T13:19:06Z) - Attention Networks for Personalized Mealtime Insulin Dosing in People with Type 1 Diabetes [0.30723404270319693]
We demonstrate how a reinforcement learning agent, employing a self-attention encoder network, can effectively mimic and enhance this intuitive process.
Results reveal a significant reduction in glycemic risk, from 16.5 to 9.6 in scenarios using sensor-augmented pump and from 9.1 to 6.7 in scenarios using automated insulin delivery.
arXiv Detail & Related papers (2024-06-18T17:59:32Z) - Using Pre-training and Interaction Modeling for ancestry-specific disease prediction in UK Biobank [69.90493129893112]
Recent genome-wide association studies (GWAS) have uncovered the genetic basis of complex traits, but show an under-representation of non-European descent individuals.
Here, we assess whether we can improve disease prediction across diverse ancestries using multiomic data.
arXiv Detail & Related papers (2024-04-26T16:39:50Z) - Prognosis and Treatment Prediction of Type-2 Diabetes Using Deep Neural
Network and Machine Learning Classifiers [1.1470070927586016]
The motion of this research is a comparative study of seven machine learning classifiers and an artificial neural network method to prognosticate the detection and treatment of diabetes with high accuracy.
Our training and test dataset is an accumulation of 9483 diabetes patients information.
Our high-performing model can be used by hospitals to predict diabetes and drive research into more accurate prediction models.
arXiv Detail & Related papers (2023-01-08T19:10:20Z) - Secure and Privacy-Preserving Automated Machine Learning Operations into
End-to-End Integrated IoT-Edge-Artificial Intelligence-Blockchain Monitoring
System for Diabetes Mellitus Prediction [0.5825410941577593]
This paper proposes an IoT-edge-Artificial Intelligence (AI)-blockchain system for diabetes prediction based on risk factors.
The proposed system is underpinned by the blockchain to obtain a cohesive view of the risk factors data from patients across different hospitals.
Numerical experiments and comparative analysis were carried out between our proposed system, using the most accurate random forest (RF) model.
arXiv Detail & Related papers (2022-11-13T13:57:14Z) - SynthA1c: Towards Clinically Interpretable Patient Representations for
Diabetes Risk Stratification [0.5551483435671848]
Early diagnosis of Type 2 Diabetes Mellitus (T2DM) is crucial to enable timely therapeutic interventions and lifestyle modifications.
We show that image-derived phenotypes and physical examination data together can accurately predict diabetes risk.
arXiv Detail & Related papers (2022-09-20T23:39:52Z) - SurvLatent ODE : A Neural ODE based time-to-event model with competing
risks for longitudinal data improves cancer-associated Deep Vein Thrombosis
(DVT) prediction [68.8204255655161]
We propose a generative time-to-event model, SurvLatent ODE, which parameterizes a latent representation under irregularly sampled data.
Our model then utilizes the latent representation to flexibly estimate survival times for multiple competing events without specifying shapes of event-specific hazard function.
SurvLatent ODE outperforms the current clinical standard Khorana Risk scores for stratifying DVT risk groups.
arXiv Detail & Related papers (2022-04-20T17:28:08Z) - UNITE: Uncertainty-based Health Risk Prediction Leveraging Multi-sourced
Data [81.00385374948125]
We present UNcertaInTy-based hEalth risk prediction (UNITE) model.
UNITE provides accurate disease risk prediction and uncertainty estimation leveraging multi-sourced health data.
We evaluate UNITE on real-world disease risk prediction tasks: nonalcoholic fatty liver disease (NASH) and Alzheimer's disease (AD)
UNITE achieves up to 0.841 in F1 score for AD detection, up to 0.609 in PR-AUC for NASH detection, and outperforms various state-of-the-art baselines by up to $19%$ over the best baseline.
arXiv Detail & Related papers (2020-10-22T02:28:11Z) - GLYFE: Review and Benchmark of Personalized Glucose Predictive Models in
Type-1 Diabetes [4.17510581764131]
GLYFE is a benchmark of machine-learning-based glucose-predictive models.
The results of nine different models coming from the glucose-prediction literature are presented.
arXiv Detail & Related papers (2020-06-29T11:34:41Z) - Short Term Blood Glucose Prediction based on Continuous Glucose
Monitoring Data [53.01543207478818]
This study explores the use of Continuous Glucose Monitoring (CGM) data as input for digital decision support tools.
We investigate how Recurrent Neural Networks (RNNs) can be used for Short Term Blood Glucose (STBG) prediction.
arXiv Detail & Related papers (2020-02-06T16:39:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.