論文の概要: Question-Driven Summarization of Answers to Consumer Health Questions
- arxiv url: http://arxiv.org/abs/2005.09067v2
- Date: Wed, 20 May 2020 14:18:05 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-01 23:39:13.149982
- Title: Question-Driven Summarization of Answers to Consumer Health Questions
- Title(参考訳): 消費者健康問題に対する回答の質問駆動要約
- Authors: Max Savery, Asma Ben Abacha, Soumya Gayen, Dina Demner-Fushman
- Abstract要約: MEDIQA Answer Summarization データセットを提案する。
このデータセットは、消費者健康問題に対する回答の質問駆動要約を含む最初の要約コレクションである。
ベースラインと最先端のディープラーニング要約モデルの結果を含める。
- 参考スコア(独自算出の注目度): 17.732729654047983
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Automatic summarization of natural language is a widely studied area in
computer science, one that is broadly applicable to anyone who routinely needs
to understand large quantities of information. For example, in the medical
domain, recent developments in deep learning approaches to automatic
summarization have the potential to make health information more easily
accessible to patients and consumers. However, to evaluate the quality of
automatically generated summaries of health information, gold-standard, human
generated summaries are required. Using answers provided by the National
Library of Medicine's consumer health question answering system, we present the
MEDIQA Answer Summarization dataset, the first summarization collection
containing question-driven summaries of answers to consumer health questions.
This dataset can be used to evaluate single or multi-document summaries
generated by algorithms using extractive or abstractive approaches. In order to
benchmark the dataset, we include results of baseline and state-of-the-art deep
learning summarization models, demonstrating that this dataset can be used to
effectively evaluate question-driven machine-generated summaries and promote
further machine learning research in medical question answering.
- Abstract(参考訳): 自然言語の自動要約は、コンピュータ科学において広く研究されている分野であり、日常的に大量の情報を理解する必要がある人に広く適用できる。
例えば、医療分野において、深層学習による自動要約へのアプローチの進歩は、患者や消費者にとってより容易に健康情報にアクセスできるようにする可能性がある。
しかし, 健康情報の自動生成サマリーの品質を評価するためには, ゴールドスタンダード, 人為的なサマリーが必要である。
国立医学図書館の消費者健康質問応答システム(consumer health question answering system)による回答を用いて,消費者健康質問に対する回答の質問駆動要約を含む,最初の要約集であるmediqa answers summarization dataset(mediqa answer summarization dataset)を提案する。
このデータセットは、抽出的または抽象的アプローチを用いてアルゴリズムによって生成された単一または複数文書の要約を評価するのに使うことができる。
データセットをベンチマークするために、ベースラインおよび最先端のディープラーニング要約モデルの結果を含み、このデータセットが、質問駆動型マシン生成要約を効果的に評価し、医学的質問応答における機械学習研究を促進できることを実証する。
関連論文リスト
- Long-Span Question-Answering: Automatic Question Generation and QA-System Ranking via Side-by-Side Evaluation [65.16137964758612]
大規模言語モデルにおける長文文の活用について検討し,本書全体の読解データを作成する。
我々の目的は、長いテキストの詳細な理解を必要とする問題を分析し、理解し、推論するLLMの能力をテストすることである。
論文 参考訳(メタデータ) (2024-05-31T20:15:10Z) - Aspect-oriented Consumer Health Answer Summarization [2.298110639419913]
コミュニティ質問回答(Community Question-Answering、CQA)フォーラムは、人々が情報を求める方法、特に医療ニーズに関連するものに革命をもたらした。
単一のクエリに対する応答にはいくつかの回答があるため、特定の健康上の懸念に関連する重要な情報を把握することが難しくなる。
本研究は、この制限に対処するために、側面に基づく健康回答の要約に焦点を当てている。
論文 参考訳(メタデータ) (2024-05-10T07:52:43Z) - Medical Vision-Language Pre-Training for Brain Abnormalities [96.1408455065347]
本稿では,PubMedなどの公共リソースから,医用画像・テキスト・アライメントデータを自動的に収集する方法を示す。
特に,まず大きな脳画像テキストデータセットを収集することにより,事前学習プロセスの合理化を図るパイプラインを提案する。
また,医療領域におけるサブフィギュアをサブキャプションにマッピングするというユニークな課題についても検討した。
論文 参考訳(メタデータ) (2024-04-27T05:03:42Z) - MedInsight: A Multi-Source Context Augmentation Framework for Generating
Patient-Centric Medical Responses using Large Language Models [3.0874677990361246]
大きな言語モデル(LLM)は、人間のような応答を生成する素晴らしい能力を示している。
我々は,LLM入力を関連背景情報で拡張する新しい検索フレームワークMedInsightを提案する。
MTSamplesデータセットの実験は、文脈的に適切な医療応答を生成するMedInsightの有効性を検証する。
論文 参考訳(メタデータ) (2024-03-13T15:20:30Z) - Medical Question Summarization with Entity-driven Contrastive Learning [12.008269098530386]
本稿では,エンティティ駆動型コントラスト学習(ECL)を用いた新しい医療質問要約フレームワークを提案する。
ECLは、しばしば質問される質問(FAQ)に医療機関を採用し、硬い負のサンプルを生成する効果的なメカニズムを考案している。
iCliniqデータセットの33%の重複率など、いくつかのMQAデータセットが深刻なデータ漏洩問題に悩まされていることが分かりました。
論文 参考訳(メタデータ) (2023-04-15T00:19:03Z) - MQAG: Multiple-choice Question Answering and Generation for Assessing
Information Consistency in Summarization [55.60306377044225]
最先端の要約システムは高度に流動的な要約を生成することができる。
しかし、これらの要約には、情報源に存在しない事実上の矛盾や情報が含まれている可能性がある。
本稿では,ソース情報と要約情報を直接比較する,標準的な情報理論に基づく代替手法を提案する。
論文 参考訳(メタデータ) (2023-01-28T23:08:25Z) - CHQ-Summ: A Dataset for Consumer Healthcare Question Summarization [21.331145794496774]
我々は1507のドメイン専門家によるアノテートされた消費者健康問題とそれに対応する要約を含む新しいデータセットであるCHQ-Summを紹介した。
データセットはコミュニティの質問応答フォーラムから派生したものだ。
我々は,複数の最先端要約モデル上でデータセットをベンチマークし,データセットの有効性を示す。
論文 参考訳(メタデータ) (2022-06-14T03:49:03Z) - AnswerSumm: A Manually-Curated Dataset and Pipeline for Answer
Summarization [73.91543616777064]
Stack OverflowやYahoo!のようなコミュニティ質問回答(CQA)フォーラムには、幅広いコミュニティベースの質問に対する回答の豊富なリソースが含まれている。
回答の要約の1つのゴールは、回答の視点の範囲を反映した要約を作成することである。
本研究は,専門言語学者による解答要約のための4,631個のCQAスレッドからなる新しいデータセットを導入する。
論文 参考訳(メタデータ) (2021-11-11T21:48:02Z) - The Medkit-Learn(ing) Environment: Medical Decision Modelling through
Simulation [81.72197368690031]
医用シーケンシャルな意思決定に特化して設計された新しいベンチマークスイートを提案する。
Medkit-Learn(ing) Environmentは、高忠実度合成医療データに簡単かつ簡単にアクセスできるPythonパッケージである。
論文 参考訳(メタデータ) (2021-06-08T10:38:09Z) - Question-aware Transformer Models for Consumer Health Question
Summarization [20.342580435464072]
我々は,医療機関の認識を通じて質問の意味的解釈を活用する抽象的質問要約モデルを開発した。
MeQSumベンチマークコーパスで評価すると、我々のフレームワークは最先端の手法を10.2ROUGE-Lで上回りました。
論文 参考訳(メタデータ) (2021-06-01T04:21:31Z) - A Revised Generative Evaluation of Visual Dialogue [80.17353102854405]
本稿では,VisDialデータセットの改訂評価手法を提案する。
モデルが生成した回答と関連する回答の集合のコンセンサスを測定する。
DenseVisDialとして改訂された評価スキームのこれらのセットとコードをリリースする。
論文 参考訳(メタデータ) (2020-04-20T13:26:45Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。