An Auto-Context Deformable Registration Network for Infant Brain MRI
- URL: http://arxiv.org/abs/2005.09230v2
- Date: Sun, 5 Jul 2020 08:56:54 GMT
- Title: An Auto-Context Deformable Registration Network for Infant Brain MRI
- Authors: Dongming Wei, Sahar Ahmad, Yunzhi Huang, Lei Ma, Zhengwang Wu, Gang
Li, Li Wang, Qian Wang, Pew-Thian Yap, Dinggang Shen
- Abstract summary: We propose an infant-dedicated deep registration network that uses the auto-context strategy to gradually refine the deformation fields.
Our method estimates the deformation fields by invoking a single network multiple times for iterative deformation refinement.
Experimental results in comparison with state-of-the-art registration methods indicate that our method achieves higher accuracy while at the same time preserves the smoothness of the deformation fields.
- Score: 54.57017031561516
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deformable image registration is fundamental to longitudinal and population
analysis. Geometric alignment of the infant brain MR images is challenging,
owing to rapid changes in image appearance in association with brain
development. In this paper, we propose an infant-dedicated deep registration
network that uses the auto-context strategy to gradually refine the deformation
fields to obtain highly accurate correspondences. Instead of training multiple
registration networks, our method estimates the deformation fields by invoking
a single network multiple times for iterative deformation refinement. The final
deformation field is obtained by the incremental composition of the deformation
fields. Experimental results in comparison with state-of-the-art registration
methods indicate that our method achieves higher accuracy while at the same
time preserves the smoothness of the deformation fields. Our implementation is
available online.
Related papers
- Progressive Retinal Image Registration via Global and Local Deformable Transformations [49.032894312826244]
We propose a hybrid registration framework called HybridRetina.
We use a keypoint detector and a deformation network called GAMorph to estimate the global transformation and local deformable transformation.
Experiments on two widely-used datasets, FIRE and FLoRI21, show that our proposed HybridRetina significantly outperforms some state-of-the-art methods.
arXiv Detail & Related papers (2024-09-02T08:43:50Z) - Learning Homeomorphic Image Registration via Conformal-Invariant
Hyperelastic Regularisation [9.53064372566798]
We propose a novel framework for deformable image registration based on conformal-invariant properties.
Our regulariser enforces the deformation field yielding to be smooth, invertible and orientation-preserving.
We demonstrate, through numerical and visual experiments, that our framework is able to outperform current techniques for image registration.
arXiv Detail & Related papers (2023-03-14T17:47:18Z) - Joint segmentation and discontinuity-preserving deformable registration:
Application to cardiac cine-MR images [74.99415008543276]
Most deep learning-based registration methods assume that the deformation fields are smooth and continuous everywhere in the image domain.
We propose a novel discontinuity-preserving image registration method to tackle this challenge, which ensures globally discontinuous and locally smooth deformation fields.
A co-attention block is proposed in the segmentation component of the network to learn the structural correlations in the input images.
We evaluate our method on the task of intra-subject-temporal image registration using large-scale cinematic cardiac magnetic resonance image sequences.
arXiv Detail & Related papers (2022-11-24T23:45:01Z) - A training-free recursive multiresolution framework for diffeomorphic
deformable image registration [6.929709872589039]
We propose a novel diffeomorphic training-free approach for deformable image registration.
The proposed architecture is simple in design. The moving image is warped successively at each resolution and finally aligned to the fixed image.
The entire system is end-to-end and optimized for each pair of images from scratch.
arXiv Detail & Related papers (2022-02-01T15:17:17Z) - DiffuseMorph: Unsupervised Deformable Image Registration Along
Continuous Trajectory Using Diffusion Models [31.826844124173984]
We present a novel approach of diffusion model-based probabilistic image registration, called DiffuseMorph.
Our model learns the score function of the deformation between moving and fixed images.
Our method can provide flexible and accurate deformation with a capability of topology preservation.
arXiv Detail & Related papers (2021-12-09T08:41:23Z) - A Deep Discontinuity-Preserving Image Registration Network [73.03885837923599]
Most deep learning-based registration methods assume that the desired deformation fields are globally smooth and continuous.
We propose a weakly-supervised Deep Discontinuity-preserving Image Registration network (DDIR) to obtain better registration performance and realistic deformation fields.
We demonstrate that our method achieves significant improvements in registration accuracy and predicts more realistic deformations, in registration experiments on cardiac magnetic resonance (MR) images.
arXiv Detail & Related papers (2021-07-09T13:35:59Z) - CAR-Net: Unsupervised Co-Attention Guided Registration Network for Joint
Registration and Structure Learning [73.03885837923599]
We propose a novel deep learning network, Co-Attention guided Registration Network (CAR-Net)
CAR-Net employs a co-attention block to learn a new representation of the inputs, which drives the registration of the fixed and moving images.
Experiments on UK Biobank cardiac cine-magnetic resonance image data demonstrate that CAR-Net obtains higher registration accuracy and smoother deformation fields than state-of-the-art unsupervised registration methods.
arXiv Detail & Related papers (2021-06-11T23:25:49Z) - Learning Deformable Image Registration from Optimization: Perspective,
Modules, Bilevel Training and Beyond [62.730497582218284]
We develop a new deep learning based framework to optimize a diffeomorphic model via multi-scale propagation.
We conduct two groups of image registration experiments on 3D volume datasets including image-to-atlas registration on brain MRI data and image-to-image registration on liver CT data.
arXiv Detail & Related papers (2020-04-30T03:23:45Z) - Fast Symmetric Diffeomorphic Image Registration with Convolutional
Neural Networks [11.4219428942199]
We present a novel, efficient unsupervised symmetric image registration method.
We evaluate our method on 3D image registration with a large scale brain image dataset.
arXiv Detail & Related papers (2020-03-20T22:07:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.