A Deep Discontinuity-Preserving Image Registration Network
- URL: http://arxiv.org/abs/2107.04440v1
- Date: Fri, 9 Jul 2021 13:35:59 GMT
- Title: A Deep Discontinuity-Preserving Image Registration Network
- Authors: Xiang Chen, Nishant Ravikumar, Yan Xia, Alejandro F Frangi
- Abstract summary: Most deep learning-based registration methods assume that the desired deformation fields are globally smooth and continuous.
We propose a weakly-supervised Deep Discontinuity-preserving Image Registration network (DDIR) to obtain better registration performance and realistic deformation fields.
We demonstrate that our method achieves significant improvements in registration accuracy and predicts more realistic deformations, in registration experiments on cardiac magnetic resonance (MR) images.
- Score: 73.03885837923599
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Image registration aims to establish spatial correspondence across pairs, or
groups of images, and is a cornerstone of medical image computing and
computer-assisted-interventions. Currently, most deep learning-based
registration methods assume that the desired deformation fields are globally
smooth and continuous, which is not always valid for real-world scenarios,
especially in medical image registration (e.g. cardiac imaging and abdominal
imaging). Such a global constraint can lead to artefacts and increased errors
at discontinuous tissue interfaces. To tackle this issue, we propose a
weakly-supervised Deep Discontinuity-preserving Image Registration network
(DDIR), to obtain better registration performance and realistic deformation
fields. We demonstrate that our method achieves significant improvements in
registration accuracy and predicts more realistic deformations, in registration
experiments on cardiac magnetic resonance (MR) images from UK Biobank Imaging
Study (UKBB), than state-of-the-art approaches.
Related papers
- Progressive Retinal Image Registration via Global and Local Deformable Transformations [49.032894312826244]
We propose a hybrid registration framework called HybridRetina.
We use a keypoint detector and a deformation network called GAMorph to estimate the global transformation and local deformable transformation.
Experiments on two widely-used datasets, FIRE and FLoRI21, show that our proposed HybridRetina significantly outperforms some state-of-the-art methods.
arXiv Detail & Related papers (2024-09-02T08:43:50Z) - Co-Learning Semantic-aware Unsupervised Segmentation for Pathological
Image Registration [13.551672729289265]
We propose GIRNet, a novel unsupervised approach for pathological image registration.
The registration of pathological images is achieved in a completely unsupervised learning framework.
Our results show that our method can accurately achieve the registration of pathological images and identify lesions even in challenging imaging modalities.
arXiv Detail & Related papers (2023-10-17T07:13:28Z) - Learning Homeomorphic Image Registration via Conformal-Invariant
Hyperelastic Regularisation [9.53064372566798]
We propose a novel framework for deformable image registration based on conformal-invariant properties.
Our regulariser enforces the deformation field yielding to be smooth, invertible and orientation-preserving.
We demonstrate, through numerical and visual experiments, that our framework is able to outperform current techniques for image registration.
arXiv Detail & Related papers (2023-03-14T17:47:18Z) - Joint segmentation and discontinuity-preserving deformable registration:
Application to cardiac cine-MR images [74.99415008543276]
Most deep learning-based registration methods assume that the deformation fields are smooth and continuous everywhere in the image domain.
We propose a novel discontinuity-preserving image registration method to tackle this challenge, which ensures globally discontinuous and locally smooth deformation fields.
A co-attention block is proposed in the segmentation component of the network to learn the structural correlations in the input images.
We evaluate our method on the task of intra-subject-temporal image registration using large-scale cinematic cardiac magnetic resonance image sequences.
arXiv Detail & Related papers (2022-11-24T23:45:01Z) - CAR-Net: Unsupervised Co-Attention Guided Registration Network for Joint
Registration and Structure Learning [73.03885837923599]
We propose a novel deep learning network, Co-Attention guided Registration Network (CAR-Net)
CAR-Net employs a co-attention block to learn a new representation of the inputs, which drives the registration of the fixed and moving images.
Experiments on UK Biobank cardiac cine-magnetic resonance image data demonstrate that CAR-Net obtains higher registration accuracy and smoother deformation fields than state-of-the-art unsupervised registration methods.
arXiv Detail & Related papers (2021-06-11T23:25:49Z) - Few-shot Medical Image Segmentation using a Global Correlation Network
with Discriminative Embedding [60.89561661441736]
We propose a novel method for few-shot medical image segmentation.
We construct our few-shot image segmentor using a deep convolutional network trained episodically.
We enhance discriminability of deep embedding to encourage clustering of the feature domains of the same class.
arXiv Detail & Related papers (2020-12-10T04:01:07Z) - F3RNet: Full-Resolution Residual Registration Network for Deformable
Image Registration [21.99118499516863]
Deformable image registration (DIR) is essential for many image-guided therapies.
We propose a novel unsupervised registration network, namely the Full-Resolution Residual Registration Network (F3RNet)
One stream takes advantage of the full-resolution information that facilitates accurate voxel-level registration.
The other stream learns the deep multi-scale residual representations to obtain robust recognition.
arXiv Detail & Related papers (2020-09-15T15:05:54Z) - An Auto-Context Deformable Registration Network for Infant Brain MRI [54.57017031561516]
We propose an infant-dedicated deep registration network that uses the auto-context strategy to gradually refine the deformation fields.
Our method estimates the deformation fields by invoking a single network multiple times for iterative deformation refinement.
Experimental results in comparison with state-of-the-art registration methods indicate that our method achieves higher accuracy while at the same time preserves the smoothness of the deformation fields.
arXiv Detail & Related papers (2020-05-19T06:00:13Z) - Learning Deformable Registration of Medical Images with Anatomical
Constraints [4.397224870979238]
Deformable image registration is a fundamental problem in the field of medical image analysis.
We learn global non-linear representations of image anatomy using segmentation masks, and employ them to constraint the registration process.
Our experiments show that the proposed anatomically constrained registration model produces more realistic and accurate results than state-of-the-art methods.
arXiv Detail & Related papers (2020-01-20T17:44:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.