論文の概要: Controlled Language and Baby Turing Test for General Conversational
Intelligence
- arxiv url: http://arxiv.org/abs/2005.09280v1
- Date: Tue, 19 May 2020 08:27:26 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-01 14:08:24.796961
- Title: Controlled Language and Baby Turing Test for General Conversational
Intelligence
- Title(参考訳): 一般会話知能のための制御言語とベイビーチューリングテスト
- Authors: Anton Kolonin
- Abstract要約: 一般的な会話知能は、人工知能の重要な部分である。
会話インテリジェンスのための古典的チューリングテストの拡張のためのベイビーチューリングテストアプローチ。
汎用的な会話システムを構築するために,この2つを併用する方法について述べる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: General conversational intelligence appears to be an important part of
artificial general intelligence. Respectively, it requires accessible measures
of the intelligence quality and controllable ways of its achievement, ideally -
having the linguistic and semantic models represented in a reasonable way. Our
work is suggesting to use Baby Turing Test approach to extend the classic
Turing Test for conversational intelligence and controlled language based on
semantic graph representation extensible for arbitrary subject domain. We
describe how the two can be used together to build a general-purpose
conversational system such as an intelligent assistant for online media and
social network data processing.
- Abstract(参考訳): 一般的な会話知能は、人工知能の重要な部分である。
それぞれ、知性の品質とその達成の制御可能な方法のアクセス可能な測定方法が必要であり、言語モデルと意味モデルが合理的に表現されるのが理想的である。
我々の研究は、任意の主題領域に拡張可能な意味グラフ表現に基づく対話知と制御言語のための古典的チューリングテストの拡張にベイビーチューリングテストアプローチを使うことを提案する。
本稿では,オンラインメディアやソーシャルネットワークデータ処理のためのインテリジェントアシスタントなどの汎用対話システムの構築に,この2つを併用する方法について述べる。
関連論文リスト
- Symbolic Learning Enables Self-Evolving Agents [55.625275970720374]
エージェントシンボリックラーニング(エージェントシンボリックラーニング)(エージェントシンボリックラーニング)は、言語エージェントが自分自身で最適化できるための体系的なフレームワークである。
エージェント記号学習は、コネクショナリズム学習における2つの基本的なアルゴリズムを模倣することにより、言語エージェント内のシンボルネットワークを最適化するように設計されている。
我々は、標準ベンチマークと複雑な実世界のタスクの両方で概念実証実験を行う。
論文 参考訳(メタデータ) (2024-06-26T17:59:18Z) - Computational Argumentation-based Chatbots: a Survey [0.4024850952459757]
本調査は,このような議論に基づくボットに関する論文をレビューするために,文献を精査する。
このアプローチの欠点とメリットについて結論を導きます。
また、Transformerベースのアーキテクチャや最先端の大規模言語モデルとの将来の開発や統合も検討している。
論文 参考訳(メタデータ) (2024-01-07T11:20:42Z) - Self Generated Wargame AI: Double Layer Agent Task Planning Based on
Large Language Model [0.6562256987706128]
本稿では,大規模言語モデルを知的意思決定の分野に革新的に応用する。
自然言語の相互作用による2層エージェントタスク計画、課題、決定命令の実行を提案する。
大規模言語モデルの知的意思決定能力は、一般的に使われている強化学習AIやルールAIよりもはるかに強いことが判明した。
論文 参考訳(メタデータ) (2023-12-02T09:45:45Z) - Dobby: A Conversational Service Robot Driven by GPT-4 [22.701223191699412]
この研究は、対話型AIエージェントをサービスタスクの具体化システムに組み込むロボティクスプラットフォームを導入する。
このエージェントは、膨大な一般知識のコーパスから学んだ、大きな言語モデルに由来する。
本発明のエージェントは対話生成に加えて、ロボットのコマンドを呼び出し、物理世界と対話することができる。
論文 参考訳(メタデータ) (2023-10-10T04:34:00Z) - AmadeusGPT: a natural language interface for interactive animal
behavioral analysis [65.55906175884748]
動作の自然言語記述をマシン実行可能なコードに変換する自然言語インタフェースであるAmadeusGPTを紹介する。
MABE 2022の動作課題タスクで最先端のパフォーマンスを実現できることを示す。
アマデウスGPTは、深い生物学的知識、大規模言語モデル、そしてコアコンピュータビジョンモジュールをより自然に知的なシステムに統合する新しい方法を提示している。
論文 参考訳(メタデータ) (2023-07-10T19:15:17Z) - Knowledge-Grounded Conversational Data Augmentation with Generative
Conversational Networks [76.11480953550013]
生成会話ネットワークを用いて会話データを自動的に生成する。
我々は、Topical Chatデータセット上で、知識のない会話に対するアプローチを評価した。
論文 参考訳(メタデータ) (2022-07-22T22:37:14Z) - End-to-end Spoken Conversational Question Answering: Task, Dataset and
Model [92.18621726802726]
音声による質問応答では、システムは関連する音声書き起こしの中に連続したテキストスパンからの質問に答えるように設計されている。
本稿では,複雑な対話フローをモデル化することを目的とした音声対話型質問応答タスク(SCQA)を提案する。
本研究の目的は,音声記録に基づく対話型質問に対処するシステムを構築することであり,情報収集システムによる様々なモダリティからより多くの手がかりを提供する可能性を探ることである。
論文 参考訳(メタデータ) (2022-04-29T17:56:59Z) - Autoencoding Language Model Based Ensemble Learning for Commonsense
Validation and Explanation [1.503974529275767]
本稿では,コモンセンス検証と説明のための自動符号化言語モデルに基づくアンサンブル学習手法を提案する。
提案手法は,コモンセンスに反する自然言語文(検証サブタスク)を識別し,コモンセンスに反する理由(説明選択サブタスク)を正しく識別する。
SemEval-2020 Task 4のベンチマークデータセットによる実験結果から,本手法が最先端モデルより優れていることが示された。
論文 参考訳(メタデータ) (2022-04-07T09:43:51Z) - Knowledge Engineering in the Long Game of Artificial Intelligence: The
Case of Speech Acts [0.6445605125467572]
本稿では,知識工学の原則と実践について述べる。
我々は,言語学,認知モデル,統計自然言語処理において広く追求されている課題である対話行動モデリングに注目した。
論文 参考訳(メタデータ) (2022-02-02T14:05:12Z) - Emergence of Machine Language: Towards Symbolic Intelligence with Neural
Networks [73.94290462239061]
本稿では、ニューラルネットワークを用いてシンボルとコネクショナリズムの原理を組み合わせることで、離散表現を導出することを提案する。
対話型環境とタスクを設計することにより、機械が自発的で柔軟でセマンティックな言語を生成できることを実証した。
論文 参考訳(メタデータ) (2022-01-14T14:54:58Z) - Can You be More Social? Injecting Politeness and Positivity into
Task-Oriented Conversational Agents [60.27066549589362]
人間エージェントが使用する社会言語は、ユーザーの応答性の向上とタスク完了に関連しています。
このモデルは、ソーシャル言語理解要素で拡張されたシーケンスからシーケンスまでのディープラーニングアーキテクチャを使用する。
人的判断と自動言語尺度の両方を用いたコンテンツ保存と社会言語レベルの評価は,エージェントがより社会的に適切な方法でユーザの問題に対処できる応答を生成できることを示している。
論文 参考訳(メタデータ) (2020-12-29T08:22:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。