Localization transitions in quadratic systems without quantum chaos
- URL: http://arxiv.org/abs/2410.05075v1
- Date: Mon, 7 Oct 2024 14:29:32 GMT
- Title: Localization transitions in quadratic systems without quantum chaos
- Authors: Mateusz Lisiecki, Lev Vidmar, Patrycja Łydżba,
- Abstract summary: We study the one-dimensional Anderson and Wannier-Stark models that exhibit eigenstate transitions from localization in quasimomentum space to localization in position space.
We show that the transition point may exhibit an unconventional character of Janus type, i.e., some measures hint at the RMT-like universality emerging at the transition point, while others depart from it.
Our results hint at rich diversity of volume-law eigenstate entanglement entropies in quadratic systems that are not maximally entangled.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Transitions from delocalized to localized eigenstates have been extensively studied in both quadratic and interacting models. The delocalized regime typically exhibits diffusion and quantum chaos, and its properties comply with the random matrix theory (RMT) predictions. However, it is also known that in certain quadratic models, the delocalization in position space is not accompanied by the single-particle quantum chaos. Here, we study the one-dimensional Anderson and Wannier-Stark models that exhibit eigenstate transitions from localization in quasimomentum space (supporting ballistic transport) to localization in position space (with no transport) in a nonstandard thermodynamic limit, which assumes rescaling the model parameters with the system size. We show that the transition point may exhibit an unconventional character of Janus type, i.e., some measures hint at the RMT-like universality emerging at the transition point, while others depart from it. For example, the eigenstate entanglement entropies may exhibit, depending on the bipartition, a volume-law behavior that either approaches the value of Haar-random Gaussian states, or converges to a lower, non-universal value. Our results hint at rich diversity of volume-law eigenstate entanglement entropies in quadratic systems that are not maximally entangled.
Related papers
- Measurement-induced transitions for interacting fermions [43.04146484262759]
We develop a field-theoretical framework that provides a unified approach to observables characterizing entanglement and charge fluctuations.
Within this framework, we derive a replicated Keldysh non-linear sigma model (NLSM)
By using the renormalization-group approach for the NLSM, we determine the phase diagram and the scaling of physical observables.
arXiv Detail & Related papers (2024-10-09T18:00:08Z) - Fock-space delocalization and the emergence of the Porter-Thomas distribution from dual-unitary dynamics [0.0]
chaotic dynamics of quantum many-body systems are expected to quickly randomize any structured initial state.
We study the spreading of an initial product state in Hilbert space under dual-unitary dynamics.
arXiv Detail & Related papers (2024-08-05T18:00:03Z) - Diagnosing non-Hermitian Many-Body Localization and Quantum Chaos via Singular Value Decomposition [0.0]
Strong local disorder in interacting quantum spin chains can turn delocalized eigenmodes into localized eigenstates.
This is accompanied by distinct spectral statistics: chaotic for the delocalized phase and integrable for the localized phase.
We ask whether random dissipation (without random disorder) can induce chaotic or localized behavior in an otherwise integrable system.
arXiv Detail & Related papers (2023-11-27T19:00:01Z) - Entanglement and localization in long-range quadratic Lindbladians [49.1574468325115]
Signatures of localization have been observed in condensed matter and cold atomic systems.
We propose a model of one-dimensional chain of non-interacting, spinless fermions coupled to a local ensemble of baths.
We show that the steady state of the system undergoes a localization entanglement phase transition by tuning $p$ which remains stable in the presence of coherent hopping.
arXiv Detail & Related papers (2023-03-13T12:45:25Z) - Localization in the random XXZ quantum spin chain [55.2480439325792]
We study the many-body localization (MBL) properties of the Heisenberg XXZ spin-$frac12$ chain in a random magnetic field.
We prove that the system exhibits localization in any given energy interval at the bottom of the spectrum in a nontrivial region of the parameter space.
arXiv Detail & Related papers (2022-10-26T17:25:13Z) - Local Stochastic Factored Gradient Descent for Distributed Quantum State
Tomography [10.623470454359431]
Local Factored Gradient Descent (Local SFGD)
Quantum State Tomography (QST) protocol.
Local SFGD converges locally to a small neighborhood of the global at a linear rate with a constant step size.
arXiv Detail & Related papers (2022-03-22T10:03:16Z) - Non-ergodic delocalized phase with Poisson level statistics [0.0]
We develop a model simulating the same eigenstate structure like in MBL, but in the random-matrix setting.
This model carries non-ergodic eigenstates, delocalized over the extensive number of configurations in the Hilbert space.
arXiv Detail & Related papers (2021-12-17T19:00:00Z) - Deformed Symmetry Structures and Quantum Many-body Scar Subspaces [12.416248333306237]
A quantum many-body scar system usually contains a special non-thermal subspace decoupled from the rest of the Hilbert space.
We propose a general structure called deformed symmetric spaces for the decoupled subspaces hosting quantum many-body scars.
arXiv Detail & Related papers (2021-08-17T18:00:02Z) - Spectral transitions and universal steady states in random Kraus maps
and circuits [0.8504685056067142]
We study random Kraus maps, allowing for a varying dissipation strength, and their local circuit counterpart.
The steady state, on the contrary, is not affected by the spectral transition.
The statistical properties of the local Kraus circuit are qualitatively the same as those of the nonlocal Kraus map.
arXiv Detail & Related papers (2020-07-08T18:00:02Z) - Robustness and Independence of the Eigenstates with respect to the
Boundary Conditions across a Delocalization-Localization Phase Transition [15.907303576427644]
We focus on the many-body eigenstates across a localization-delocalization phase transition.
In the ergodic phase, the average of eigenstate overlaps $barmathcalO$ is exponential decay with the increase of the system size.
For localized systems, $barmathcalO$ is almost size-independent showing the strong robustness of the eigenstates.
arXiv Detail & Related papers (2020-05-19T10:19:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.