Interplay of localization and topology in disordered dimerized array of Rydberg atoms
- URL: http://arxiv.org/abs/2505.07720v1
- Date: Mon, 12 May 2025 16:26:44 GMT
- Title: Interplay of localization and topology in disordered dimerized array of Rydberg atoms
- Authors: Maksym Prodius, Adith Sai Aramthottil, Jakub Zakrzewski,
- Abstract summary: Rydberg tweezer arrays provide a platform for realizing spin-1/2 Hamiltonians with long-range tunnelings decaying according to power-law with the distance.<n>We numerically investigate the effects of positional disorder and dimerization on the properties of excited states in such a one-dimensional system.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Rydberg tweezer arrays provide a platform for realizing spin-1/2 Hamiltonians with long-range tunnelings decaying according to power-law with the distance. We numerically investigate the effects of positional disorder and dimerization on the properties of excited states in such a one-dimensional system. Our model allows for the continuous tuning of dimerization patterns and disorder strength. We identify different distinct ergodicity-breaking regimes within the parameter space constrained by our geometry. Notably, one of these regimes exhibits a unique feature in which non-trivial symmetry-protected topological (SPT) properties of the ground state extend to a noticeable fraction of states across the entire spectrum. This interplay between localization and SPT makes the system particularly interesting, as localization should help with stabilization of topological excitations, while SPT states contribute to an additional delocalization. Other regions of parameters correspond to more standard nonergodic dynamics resembling many-body localization.
Related papers
- Unveiling the Self-Orthogonality at Exceptional Points in Driven $\mathcal{PT}$-Symmetric Systems [79.16635054977068]
We explore the effect of self-orthogonality at exceptional points (EPs) in non-Hermitian Parity-Time-symmetric systems.<n>Using a driven three-band lattice model, we show that the Rabi frequency diverges as the system approaches an EP due to the coalescence of eigenstates.
arXiv Detail & Related papers (2025-07-14T12:53:10Z) - Controlling Excitation Localization in Waveguide QED Systems [0.4999814847776098]
We study localization and long-time population trapping in quantum emitters coupled to a waveguide.<n>We find two distinct mechanisms that give rise to localization: geometry-induced subradiance and disorder-induced Anderson-like confinement.<n>These results establish geometry and disorder as complementary tools for engineering long-lived quantum states in waveguide QED systems.
arXiv Detail & Related papers (2025-05-27T08:24:51Z) - Strong-to-weak spontaneous symmetry breaking and average symmetry protected topological order in the doubled Hilbert space [0.0]
This study is an extended version of the cluster model in one dimension with $Zotimes Z$ symmetry.<n>By using a scheme that we propose, a strong symmetry protected topological (SPT) mixed state and double average SPT (ASPT) state are constructed.<n>We numerically demonstrate the emergence of the two mixed SPT states and find that a transition occurs between them tuned by the strength of decoherence.
arXiv Detail & Related papers (2025-03-13T12:44:24Z) - Exceptional Points and Stability in Nonlinear Models of Population Dynamics having $\mathcal{PT}$ symmetry [49.1574468325115]
We analyze models governed by the replicator equation of evolutionary game theory and related Lotka-Volterra systems of population dynamics.<n>We study the emergence of exceptional points in two cases: (a) when the governing symmetry properties are tied to global properties of the models, and (b) when these symmetries emerge locally around stationary states.
arXiv Detail & Related papers (2024-11-19T02:15:59Z) - Tensor Product Structure Geometry under Unitary Channels [0.0]
Locality is typically defined with respect to a product structure (TPS) which identifies the local subsystems of the quantum system.<n>We show that this TPS distance is related to scrambling properties of the dynamics between the local subsystems and coincides with the power of entangling of 2-unitaries.<n>For Hamiltonian evolutions at short times, the characteristic timescale of the TPS distance depends on scrambling rates determined by the strength of interactions between the local subsystems.
arXiv Detail & Related papers (2024-10-03T19:02:22Z) - Entanglement and localization in long-range quadratic Lindbladians [49.1574468325115]
Signatures of localization have been observed in condensed matter and cold atomic systems.
We propose a model of one-dimensional chain of non-interacting, spinless fermions coupled to a local ensemble of baths.
We show that the steady state of the system undergoes a localization entanglement phase transition by tuning $p$ which remains stable in the presence of coherent hopping.
arXiv Detail & Related papers (2023-03-13T12:45:25Z) - Subradiant edge states in an atom chain with waveguide-mediated hopping [0.0]
We analyze a system formed by two chains of identical emitters coupled to a waveguide, whose guided modes induce excitation hopping.
We find that, in the single excitation limit, the bulk topological properties of the Hamiltonian that describes the coherent dynamics of the system are identical to the ones of a one-dimensional Su-Schrieffer-Heeger model.
We analytically identify parameter regimes where edge states arise which are fully localized to the boundaries of the chain, independently of the system size.
arXiv Detail & Related papers (2022-05-27T09:35:49Z) - Neural-Network Quantum States for Periodic Systems in Continuous Space [66.03977113919439]
We introduce a family of neural quantum states for the simulation of strongly interacting systems in the presence of periodicity.
For one-dimensional systems we find very precise estimations of the ground-state energies and the radial distribution functions of the particles.
In two dimensions we obtain good estimations of the ground-state energies, comparable to results obtained from more conventional methods.
arXiv Detail & Related papers (2021-12-22T15:27:30Z) - Delocalization of topological edge states [0.0]
The non-Hermitian skin effect (NHSE) in non-Hermitian lattice systems depicts the exponential localization of eigenstates at system's boundaries.
This work aims to investigate how the NHSE localization and topological localization of in-gap edge states compete with each other.
arXiv Detail & Related papers (2021-03-08T09:13:48Z) - Robustness and Independence of the Eigenstates with respect to the
Boundary Conditions across a Delocalization-Localization Phase Transition [15.907303576427644]
We focus on the many-body eigenstates across a localization-delocalization phase transition.
In the ergodic phase, the average of eigenstate overlaps $barmathcalO$ is exponential decay with the increase of the system size.
For localized systems, $barmathcalO$ is almost size-independent showing the strong robustness of the eigenstates.
arXiv Detail & Related papers (2020-05-19T10:19:52Z) - Anisotropy-mediated reentrant localization [62.997667081978825]
We consider a 2d dipolar system, $d=2$, with the generalized dipole-dipole interaction $sim r-a$, and the power $a$ controlled experimentally in trapped-ion or Rydberg-atom systems.
We show that the spatially homogeneous tilt $beta$ of the dipoles giving rise to the anisotropic dipole exchange leads to the non-trivial reentrant localization beyond the locator expansion.
arXiv Detail & Related papers (2020-01-31T19:00:01Z) - Observing localisation in a 2D quasicrystalline optical lattice [52.77024349608834]
We experimentally and numerically study the ground state of non- and weakly-interacting bosons in an eightfold symmetric optical lattice.
We find extended states for weak lattices but observe a localisation transition at a lattice depth of $V_0.78(2),E_mathrmrec$ for the non-interacting system.
arXiv Detail & Related papers (2020-01-29T15:54:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.