Chemistry in Quantum Cavities: Exact Results, the Impact of Thermal
Velocities and Modified Dissociation
- URL: http://arxiv.org/abs/2005.09385v1
- Date: Tue, 19 May 2020 12:23:24 GMT
- Title: Chemistry in Quantum Cavities: Exact Results, the Impact of Thermal
Velocities and Modified Dissociation
- Authors: Dominik Sidler, Michael Ruggenthaler, Heiko Appel and Angel Rubio
- Abstract summary: We provide reference calculations from exact diagonalisation of the Pauli-Fierz Hamiltonian in the long-wavelength limit with an effective cavity mode.
We demonstrate how the commonly ignored thermal velocity of charged molecular systems can influence chemical properties.
We show the emergence of new bound polaritonic states beyond the dissociation energy limit.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In recent years tremendous progress in the field of light-matter interactions
has unveiled that strong coupling to the modes of an optical cavity can alter
chemistry even at room temperature. Despite these impressive advances, many
fundamental questions of chemistry in cavities remain unanswered. This is also
due to a lack of exact results that can be used to validate and benchmark
approximate approaches. In this work we provide such reference calculations
from exact diagonalisation of the Pauli-Fierz Hamiltonian in the
long-wavelength limit with an effective cavity mode. This allows us to
investigate the reliability of the ubiquitous Jaynes-Cummings model not only
for electronic but also for the case of ro-vibrational transitions. We
demonstrate how the commonly ignored thermal velocity of charged molecular
systems can influence chemical properties, while leaving the spectra invariant.
Furthermore, we show the emergence of new bound polaritonic states beyond the
dissociation energy limit.
Related papers
- Exact Solution for A Real Polaritonic System Under Vibrational Strong
Coupling in Thermodynamic Equilibrium: Absence of Zero Temperature and Loss
of Light-Matter Entanglement [0.0]
First exact quantum simulation of a real molecular system (HD$+$) under strong ro-vibrational coupling to a quantized optical cavity mode in thermal equilibrium is presented.
arXiv Detail & Related papers (2022-08-02T09:21:52Z) - Demonstrating Quantum Microscopic Reversibility Using Coherent States of
Light [58.8645797643406]
We propose and experimentally test a quantum generalization of the microscopic reversibility when a quantum system interacts with a heat bath.
We verify that the quantum modification for the principle of microscopic reversibility is critical in the low-temperature limit.
arXiv Detail & Related papers (2022-05-26T00:25:29Z) - In-Gap Band Formation in a Periodically Driven Charge Density Wave
Insulator [68.8204255655161]
Periodically driven quantum many-body systems host unconventional behavior not realized at equilibrium.
We investigate such a setup for strongly interacting spinless fermions on a chain, which at zero temperature and strong interactions form a charge density wave insulator.
arXiv Detail & Related papers (2022-05-19T13:28:47Z) - Tuning long-range fermion-mediated interactions in cold-atom quantum
simulators [68.8204255655161]
Engineering long-range interactions in cold-atom quantum simulators can lead to exotic quantum many-body behavior.
Here, we propose several tuning knobs, accessible in current experimental platforms, that allow to further control the range and shape of the mediated interactions.
arXiv Detail & Related papers (2022-03-31T13:32:12Z) - Theoretical Challenges in Polaritonic Chemistry [0.0]
Polaritonic chemistry exploits strong light-matter coupling between molecules and confined electromagnetic field modes.
In wavelength-scale optical cavities light-matter interaction is ruled by collective effects.
Plasmonic subwavelength nanocavities allow even single molecules to reach strong coupling.
arXiv Detail & Related papers (2021-11-16T11:50:19Z) - Disorder enhanced vibrational entanglement and dynamics in polaritonic
chemistry [0.0]
Theory often neglects quantum entanglement between nuclear and electro-photonic degrees of freedom.
We show that disorder can strongly enhance the build-up of this entanglement on short timescales.
We simulate the exact quantum dynamics of more than 100 molecules.
arXiv Detail & Related papers (2021-07-13T13:06:52Z) - Chemical tuning of spin clock transitions in molecular monomers based on
nuclear spin-free Ni(II) [52.259804540075514]
We report the existence of a sizeable quantum tunnelling splitting between the two lowest electronic spin levels of mononuclear Ni complexes.
The level anti-crossing, or magnetic clock transition, associated with this gap has been directly monitored by heat capacity experiments.
The comparison of these results with those obtained for a Co derivative, for which tunnelling is forbidden by symmetry, shows that the clock transition leads to an effective suppression of intermolecular spin-spin interactions.
arXiv Detail & Related papers (2021-03-04T13:31:40Z) - Evolution of a Non-Hermitian Quantum Single-Molecule Junction at
Constant Temperature [62.997667081978825]
We present a theory for describing non-Hermitian quantum systems embedded in constant-temperature environments.
We find that the combined action of probability losses and thermal fluctuations assists quantum transport through the molecular junction.
arXiv Detail & Related papers (2021-01-21T14:33:34Z) - Polaritonic Chemistry: Collective Strong Coupling Implies Strong Local
Modification of Chemical Properties [0.0]
Polaritonic chemistry has become a rapidly developing field within the last few years.
Experiments suggest that chemical properties can be fundamentally altered and novel physical states appear when matter is strongly coupled to resonant cavity modes.
Up until now, theoretical approaches to explain and predict these observations were either limited to quantum optical models, suited to describe collective polaritonic effects, or ab initio approaches for small system sizes.
arXiv Detail & Related papers (2020-11-06T11:13:03Z) - The Free Electron Gas in Cavity Quantum Electrodynamics [0.0]
We revisit Sommerfeld's theory of the free electron gas in cavity quantum electrodynamics.
We show that the electron-photon ground state is a Fermi liquid which contains virtual photons.
We also show that the cavity field induces plasmon-polariton excitations and modifies the optical and the DC conductivity of the electron gas.
arXiv Detail & Related papers (2020-06-16T15:12:20Z) - Quantum decoherence by Coulomb interaction [58.720142291102135]
We present an experimental study of the Coulomb-induced decoherence of free electrons in a superposition state in a biprism electron interferometer close to a semiconducting and metallic surface.
The results will enable the determination and minimization of specific decoherence channels in the design of novel quantum instruments.
arXiv Detail & Related papers (2020-01-17T04:11:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.