Investigating Application of Deep Neural Networks in Intrusion Detection System Design
- URL: http://arxiv.org/abs/2501.15760v1
- Date: Mon, 27 Jan 2025 04:06:30 GMT
- Title: Investigating Application of Deep Neural Networks in Intrusion Detection System Design
- Authors: Mofe O. Jeje,
- Abstract summary: Research aims to learn how effective applications of Deep Neural Networks (DNN) can accurately detect and identify malicious network intrusion.
Test results demonstrate no support for the model to accurately and correctly distinguish the classification of network intrusion.
- Score: 0.0
- License:
- Abstract: Despite decades of development, existing IDSs still face challenges in improving detection accuracy, evasion, and detection of unknown attacks. To solve these problems, many researchers have focused on designing and developing IDSs that use Deep Neural Networks (DNN) which provides advanced methods of threat investigation and detection. Given this reason, the motivation of this research then, is to learn how effective applications of Deep Neural Networks (DNN) can accurately detect and identify malicious network intrusion, while advancing the frontiers of their optimal potential use in network intrusion detection. Using the ASNM-TUN dataset, the study used a Multilayer Perceptron modeling approach in Deep Neural Network to identify network intrusions, in addition to distinguishing them in terms of legitimate network traffic, direct network attacks, and obfuscated network attacks. To further enhance the speed and efficiency of this DNN solution, a thorough feature selection technique called Forward Feature Selection (FFS), which resulted in a significant reduction in the feature subset, was implemented. Using the Multilayer Perceptron model, test results demonstrate no support for the model to accurately and correctly distinguish the classification of network intrusion.
Related papers
- Achieving Network Resilience through Graph Neural Network-enabled Deep Reinforcement Learning [64.20847540439318]
Deep reinforcement learning (DRL) has been widely used in many important tasks of communication networks.
Some studies have combined graph neural networks (GNNs) with DRL, which use the GNNs to extract unstructured features of the network.
This paper explores the solution of combining GNNs with DRL to build a resilient network.
arXiv Detail & Related papers (2025-01-19T15:22:17Z) - Enhanced Convolution Neural Network with Optimized Pooling and Hyperparameter Tuning for Network Intrusion Detection [0.0]
We propose an Enhanced Convolutional Neural Network (EnCNN) for Network Intrusion Detection Systems (NIDS)
We compare EnCNN with various machine learning algorithms, including Logistic Regression, Decision Trees, Support Vector Machines (SVM), and ensemble methods like Random Forest, AdaBoost, and Voting Ensemble.
The results show that EnCNN significantly improves detection accuracy, with a notable 10% increase over state-of-art approaches.
arXiv Detail & Related papers (2024-09-27T11:20:20Z) - Deep Learning Algorithms Used in Intrusion Detection Systems -- A Review [0.0]
This review paper studies recent advancements in the application of deep learning techniques, including CNN, Recurrent Neural Networks (RNN), Deep Belief Networks (DBN), Deep Neural Networks (DNN), Long Short-Term Memory (LSTM), autoencoders (AE), Multi-Layer Perceptrons (MLP), Self-Normalizing Networks (SNN) and hybrid models, within network intrusion detection systems.
arXiv Detail & Related papers (2024-02-26T20:57:35Z) - TANTRA: Timing-Based Adversarial Network Traffic Reshaping Attack [46.79557381882643]
We present TANTRA, a novel end-to-end Timing-based Adversarial Network Traffic Reshaping Attack.
Our evasion attack utilizes a long short-term memory (LSTM) deep neural network (DNN) which is trained to learn the time differences between the target network's benign packets.
TANTRA achieves an average success rate of 99.99% in network intrusion detection system evasion.
arXiv Detail & Related papers (2021-03-10T19:03:38Z) - Few-shot Network Anomaly Detection via Cross-network Meta-learning [45.8111239825361]
We propose a new family of graph neural networks -- Graph Deviation Networks (GDN)
GDN can leverage a small number of labeled anomalies for enforcing statistically significant deviations between abnormal and normal nodes on a network.
We equip the proposed GDN with a new cross-network meta-learning algorithm to realize few-shot network anomaly detection.
arXiv Detail & Related papers (2021-02-22T16:42:37Z) - Increasing the Confidence of Deep Neural Networks by Coverage Analysis [71.57324258813674]
This paper presents a lightweight monitoring architecture based on coverage paradigms to enhance the model against different unsafe inputs.
Experimental results show that the proposed approach is effective in detecting both powerful adversarial examples and out-of-distribution inputs.
arXiv Detail & Related papers (2021-01-28T16:38:26Z) - Bayesian Optimization with Machine Learning Algorithms Towards Anomaly
Detection [66.05992706105224]
In this paper, an effective anomaly detection framework is proposed utilizing Bayesian Optimization technique.
The performance of the considered algorithms is evaluated using the ISCX 2012 dataset.
Experimental results show the effectiveness of the proposed framework in term of accuracy rate, precision, low-false alarm rate, and recall.
arXiv Detail & Related papers (2020-08-05T19:29:35Z) - Evaluation of Adversarial Training on Different Types of Neural Networks
in Deep Learning-based IDSs [3.8073142980733]
We focus on investigating the effectiveness of different evasion attacks and how to train a resilience deep learning-based IDS.
We use the min-max approach to formulate the problem of training robust IDS against adversarial examples.
Our experiments on different deep learning algorithms and different benchmark datasets demonstrate that defense using an adversarial training-based min-max approach improves the robustness against the five well-known adversarial attack methods.
arXiv Detail & Related papers (2020-07-08T23:33:30Z) - A cognitive based Intrusion detection system [0.0]
Intrusion detection is one of the important mechanisms that provide computer networks security.
This paper proposes a new approach based on Deep Neural Network ans Support vector machine classifier.
The proposed model predicts the attacks with better accuracy for intrusion detection rather similar methods.
arXiv Detail & Related papers (2020-05-19T13:30:30Z) - Rectified Linear Postsynaptic Potential Function for Backpropagation in
Deep Spiking Neural Networks [55.0627904986664]
Spiking Neural Networks (SNNs) usetemporal spike patterns to represent and transmit information, which is not only biologically realistic but also suitable for ultra-low-power event-driven neuromorphic implementation.
This paper investigates the contribution of spike timing dynamics to information encoding, synaptic plasticity and decision making, providing a new perspective to design of future DeepSNNs and neuromorphic hardware systems.
arXiv Detail & Related papers (2020-03-26T11:13:07Z) - Machine Learning based Anomaly Detection for 5G Networks [0.0]
This paper proposes SDS (Software Defined Security) as a means to provide an automated, flexible and scalable network defence system.
SDS will harness current advances in machine learning to design a CNN (Convolutional Neural Network) using NAS (Neural Architecture Search) to detect anomalous network traffic.
arXiv Detail & Related papers (2020-03-07T00:17:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.