Experimental Review of Neural-based approaches for Network Intrusion
Management
- URL: http://arxiv.org/abs/2009.09011v1
- Date: Fri, 18 Sep 2020 18:32:24 GMT
- Title: Experimental Review of Neural-based approaches for Network Intrusion
Management
- Authors: Mario Di Mauro, Giovanni Galatro, Antonio Liotta
- Abstract summary: We provide an experimental-based review of neural-based methods applied to intrusion detection issues.
We offer a complete view of the most prominent neural-based techniques relevant to intrusion detection, including deep-based approaches or weightless neural networks.
Our evaluation quantifies the value of neural networks, particularly when state-of-the-art datasets are used to train the models.
- Score: 8.727349339883094
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The use of Machine Learning (ML) techniques in Intrusion Detection Systems
(IDS) has taken a prominent role in the network security management field, due
to the substantial number of sophisticated attacks that often pass undetected
through classic IDSs. These are typically aimed at recognising attacks based on
a specific signature, or at detecting anomalous events. However, deterministic,
rule-based methods often fail to differentiate particular (rarer) network
conditions (as in peak traffic during specific network situations) from actual
cyber attacks. In this paper we provide an experimental-based review of
neural-based methods applied to intrusion detection issues. Specifically, we i)
offer a complete view of the most prominent neural-based techniques relevant to
intrusion detection, including deep-based approaches or weightless neural
networks, which feature surprising outcomes; ii) evaluate novel datasets
(updated w.r.t. the obsolete KDD99 set) through a designed-from-scratch
Python-based routine; iii) perform experimental analyses including time
complexity and performance (accuracy and F-measure), considering both
single-class and multi-class problems, and identifying trade-offs between
resource consumption and performance. Our evaluation quantifies the value of
neural networks, particularly when state-of-the-art datasets are used to train
the models. This leads to interesting guidelines for security managers and
computer network practitioners who are looking at the incorporation of
neural-based ML into IDS.
Related papers
- Feature Selection for Network Intrusion Detection [3.7414804164475983]
We present a novel information-theoretic method that facilitates the exclusion of non-informative features when detecting network intrusions.
The proposed method is based on function approximation using a neural network, which enables a version of our approach that incorporates a recurrent layer.
arXiv Detail & Related papers (2024-11-18T14:25:55Z) - Deep Learning Algorithms Used in Intrusion Detection Systems -- A Review [0.0]
This review paper studies recent advancements in the application of deep learning techniques, including CNN, Recurrent Neural Networks (RNN), Deep Belief Networks (DBN), Deep Neural Networks (DNN), Long Short-Term Memory (LSTM), autoencoders (AE), Multi-Layer Perceptrons (MLP), Self-Normalizing Networks (SNN) and hybrid models, within network intrusion detection systems.
arXiv Detail & Related papers (2024-02-26T20:57:35Z) - How neural networks learn to classify chaotic time series [77.34726150561087]
We study the inner workings of neural networks trained to classify regular-versus-chaotic time series.
We find that the relation between input periodicity and activation periodicity is key for the performance of LKCNN models.
arXiv Detail & Related papers (2023-06-04T08:53:27Z) - Leveraging a Probabilistic PCA Model to Understand the Multivariate
Statistical Network Monitoring Framework for Network Security Anomaly
Detection [64.1680666036655]
We revisit anomaly detection techniques based on PCA from a probabilistic generative model point of view.
We have evaluated the mathematical model using two different datasets.
arXiv Detail & Related papers (2023-02-02T13:41:18Z) - Anomaly Detection on Attributed Networks via Contrastive Self-Supervised
Learning [50.24174211654775]
We present a novel contrastive self-supervised learning framework for anomaly detection on attributed networks.
Our framework fully exploits the local information from network data by sampling a novel type of contrastive instance pair.
A graph neural network-based contrastive learning model is proposed to learn informative embedding from high-dimensional attributes and local structure.
arXiv Detail & Related papers (2021-02-27T03:17:20Z) - Increasing the Confidence of Deep Neural Networks by Coverage Analysis [71.57324258813674]
This paper presents a lightweight monitoring architecture based on coverage paradigms to enhance the model against different unsafe inputs.
Experimental results show that the proposed approach is effective in detecting both powerful adversarial examples and out-of-distribution inputs.
arXiv Detail & Related papers (2021-01-28T16:38:26Z) - Deep Learning based Covert Attack Identification for Industrial Control
Systems [5.299113288020827]
We develop a data-driven framework that can be used to detect, diagnose, and localize a type of cyberattack called covert attacks on smart grids.
The framework has a hybrid design that combines an autoencoder, a recurrent neural network (RNN) with a Long-Short-Term-Memory layer, and a Deep Neural Network (DNN)
arXiv Detail & Related papers (2020-09-25T17:48:43Z) - Bayesian Optimization with Machine Learning Algorithms Towards Anomaly
Detection [66.05992706105224]
In this paper, an effective anomaly detection framework is proposed utilizing Bayesian Optimization technique.
The performance of the considered algorithms is evaluated using the ISCX 2012 dataset.
Experimental results show the effectiveness of the proposed framework in term of accuracy rate, precision, low-false alarm rate, and recall.
arXiv Detail & Related papers (2020-08-05T19:29:35Z) - Evaluation of Adversarial Training on Different Types of Neural Networks
in Deep Learning-based IDSs [3.8073142980733]
We focus on investigating the effectiveness of different evasion attacks and how to train a resilience deep learning-based IDS.
We use the min-max approach to formulate the problem of training robust IDS against adversarial examples.
Our experiments on different deep learning algorithms and different benchmark datasets demonstrate that defense using an adversarial training-based min-max approach improves the robustness against the five well-known adversarial attack methods.
arXiv Detail & Related papers (2020-07-08T23:33:30Z) - A cognitive based Intrusion detection system [0.0]
Intrusion detection is one of the important mechanisms that provide computer networks security.
This paper proposes a new approach based on Deep Neural Network ans Support vector machine classifier.
The proposed model predicts the attacks with better accuracy for intrusion detection rather similar methods.
arXiv Detail & Related papers (2020-05-19T13:30:30Z) - Survey of Network Intrusion Detection Methods from the Perspective of
the Knowledge Discovery in Databases Process [63.75363908696257]
We review the methods that have been applied to network data with the purpose of developing an intrusion detector.
We discuss the techniques used for the capture, preparation and transformation of the data, as well as, the data mining and evaluation methods.
As a result of this literature review, we investigate some open issues which will need to be considered for further research in the area of network security.
arXiv Detail & Related papers (2020-01-27T11:21:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.