Quantum resource covariance
- URL: http://arxiv.org/abs/2005.09612v2
- Date: Mon, 22 Feb 2021 21:50:57 GMT
- Title: Quantum resource covariance
- Authors: Matheus Fritsch Savi and Renato Moreira Angelo
- Abstract summary: Since the dawn of quantum mechanics there is no consensus on what the theory is all about.
We construct a theoretical framework within which a given combination of quantum resources is shown to be a Galilean invariant.
We show that the notion of physical reality implied by quantum mechanics is not absolute.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The developments of special relativity and quantum mechanics marked the
beginning of the modern physics age. The former has taught us that while space
and time are frame dependent notions, there is a quantity -- the space-time
interval -- whose value all inertial observers agree upon. This reveals, so to
speak, a genuine "fact" of the universe, a relativistic invariant. On the other
hand, since the dawn of quantum mechanics, there is no consensus on what the
theory is all about. The situation is admittedly subtler: quantum theory is
grounded on a complex vector space and the very notions of observer and
reference frame are controversial. Here we construct a theoretical framework
within which a given combination of quantum resources is shown to be a Galilean
invariant. To this end, we postulate a principle of relational symmetry between
"the observer" and "the observed" and employ the notion of quantum reference
frame. Unitary transformations then follow that allow us to perceive the
physical resources seen from the viewpoint of any quantum system.
Interestingly, we find that one needs more than quantum coherence and quantum
correlations to prove quantum resources covariance. Finally, we show that the
notion of physical reality implied by quantum mechanics is not absolute.
Related papers
- What is "quantum" about quantum gravity? [0.0]
We argue that if both the equivalence principle and quantum mechanics continue to survive experimental tests, that this favors epistemic'' interpretations of quantum mechanics.
arXiv Detail & Related papers (2024-05-13T21:19:50Z) - Relativistic time dilation from a quantum mechanism [0.0]
We show that Lorentz transformations are obtained by a quantum mechanism.
We postulate this mechanism as the source of the phenomena of Special Relativity.
In this theory, the fundamental limit of the speed of light imposes a transparency condition for faster-than-light particles.
arXiv Detail & Related papers (2023-07-09T19:37:00Z) - Quantum Relativity [0.0]
A new quantum postulate is suggested to restore classical locality and causality to quantum physics.
This postulate supports the EPR view that quantum mechanics is incomplete, while also staying compatible to the Bohr view that nothing exists beyond the quantum.
arXiv Detail & Related papers (2023-02-04T02:05:25Z) - Is there a finite complete set of monotones in any quantum resource theory? [39.58317527488534]
We show that there does not exist a finite set of resource monotones which completely determines all state transformations.
We show that totally ordered theories allow for free transformations between all pure states.
arXiv Detail & Related papers (2022-12-05T18:28:36Z) - Quantum Instability [30.674987397533997]
We show how a time-independent, finite-dimensional quantum system can give rise to a linear instability corresponding to that in the classical system.
An unstable quantum system has a richer spectrum and a much longer recurrence time than a stable quantum system.
arXiv Detail & Related papers (2022-08-05T19:53:46Z) - Emergence of Quantum Theory and Minkowski Spacetime [0.0]
We show that quantum theory and Minkowski spacetime may connect with each other and emerge from a single fundamental entity.
We show that quantum theory and Minkowski spacetime may connect with each other and emerge from a single fundamental entity.
arXiv Detail & Related papers (2022-05-12T01:51:05Z) - Quantum realism: axiomatization and quantification [77.34726150561087]
We build an axiomatization for quantum realism -- a notion of realism compatible with quantum theory.
We explicitly construct some classes of entropic quantifiers that are shown to satisfy almost all of the proposed axioms.
arXiv Detail & Related papers (2021-10-10T18:08:42Z) - Is spacetime quantum? [0.0]
We show a theorem stating that spacetime degrees of freedom and a quantum system violate a Bell inequality in a background Minkowski spacetime.
We argue that this implies that spacetime cannot be sensibly called classical if the assumptions in our theorem hold.
arXiv Detail & Related papers (2021-09-06T17:13:51Z) - Quantum indistinguishability through exchangeable desirable gambles [69.62715388742298]
Two particles are identical if all their intrinsic properties, such as spin and charge, are the same.
Quantum mechanics is seen as a normative and algorithmic theory guiding an agent to assess her subjective beliefs represented as (coherent) sets of gambles.
We show how sets of exchangeable observables (gambles) may be updated after a measurement and discuss the issue of defining entanglement for indistinguishable particle systems.
arXiv Detail & Related papers (2021-05-10T13:11:59Z) - Operational Resource Theory of Imaginarity [48.7576911714538]
We show that quantum states are easier to create and manipulate if they only have real elements.
As an application, we show that imaginarity plays a crucial role for state discrimination.
arXiv Detail & Related papers (2020-07-29T14:03:38Z) - There is only one time [110.83289076967895]
We draw a picture of physical systems that allows us to recognize what is this thing called "time"
We derive the Schr"odinger equation in the first case, and the Hamilton equations of motion in the second one.
arXiv Detail & Related papers (2020-06-22T09:54:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.