Emergence of Quantum Theory and Minkowski Spacetime
- URL: http://arxiv.org/abs/2205.05829v1
- Date: Thu, 12 May 2022 01:51:05 GMT
- Title: Emergence of Quantum Theory and Minkowski Spacetime
- Authors: Si-xue Qin
- Abstract summary: We show that quantum theory and Minkowski spacetime may connect with each other and emerge from a single fundamental entity.
We show that quantum theory and Minkowski spacetime may connect with each other and emerge from a single fundamental entity.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The state-of-the-art physics consists of two irreconcilable branches, i.e.,
the quantum theory and the general relativity, which work well in their own
territories, independently. However, what are quantum and spacetime after all?
The key question was never addressed, satisfactorily. In this work, we describe
a possibility to reformulate the quantum theory in the Minkowski spacetime from
the viewpoint of classic physics in the Euclidean spacetime, i.e., classic
mechanics and stochastic process theory. We show that quantum theory and
Minkowski spacetime may connect with each other and emerge from a single
fundamental entity.
Related papers
- Quantum Instability [30.674987397533997]
We show how a time-independent, finite-dimensional quantum system can give rise to a linear instability corresponding to that in the classical system.
An unstable quantum system has a richer spectrum and a much longer recurrence time than a stable quantum system.
arXiv Detail & Related papers (2022-08-05T19:53:46Z) - The relational ontology of contemporary physics [0.0]
Quantum theory can be understood as pointing to an ontology of relations.
I observe that this reading of quantum mechanics is supported by the ubiquity of relationality in contemporary fundamental physics.
arXiv Detail & Related papers (2022-01-03T23:30:08Z) - Is spacetime quantum? [0.0]
We show a theorem stating that spacetime degrees of freedom and a quantum system violate a Bell inequality in a background Minkowski spacetime.
We argue that this implies that spacetime cannot be sensibly called classical if the assumptions in our theorem hold.
arXiv Detail & Related papers (2021-09-06T17:13:51Z) - Spacetime symmetries and the qubit Bloch ball: a physical derivation of
finite dimensional quantum theory and the number of spatial dimensions [0.0]
Quantum theory and relativity are the pillar theories on which our understanding of physics is based.
Poincar'e invariance is a fundamental physical principle stating that the experimental results must be the same in all inertial reference frames in Minkowski spacetime.
Our results suggest a fundamental physical connection between spacetime and quantum theory.
arXiv Detail & Related papers (2021-07-19T22:48:43Z) - The arithmetic of uncertainty unifies quantum formalism and relativistic
spacetime [0.0]
Quantum theory deals with objects probabilistically at small scales, whereas relativity deals classically with motion in space and time.
We show here that the mathematical structures of quantum theory and of relativity follow together from pure thought.
One dimension of time and three dimensions of space are thus derived as the profound and inevitable framework of physics.
arXiv Detail & Related papers (2020-12-19T20:40:27Z) - Operational Resource Theory of Imaginarity [48.7576911714538]
We show that quantum states are easier to create and manipulate if they only have real elements.
As an application, we show that imaginarity plays a crucial role for state discrimination.
arXiv Detail & Related papers (2020-07-29T14:03:38Z) - Preferred basis, decoherence and a quantum state of the Universe [77.34726150561087]
We review a number of issues in foundations of quantum theory and quantum cosmology.
These issues can be considered as a part of the scientific legacy of H.D. Zeh.
arXiv Detail & Related papers (2020-06-28T18:07:59Z) - There is only one time [110.83289076967895]
We draw a picture of physical systems that allows us to recognize what is this thing called "time"
We derive the Schr"odinger equation in the first case, and the Hamilton equations of motion in the second one.
arXiv Detail & Related papers (2020-06-22T09:54:46Z) - Quantum resource covariance [0.0]
Since the dawn of quantum mechanics there is no consensus on what the theory is all about.
We construct a theoretical framework within which a given combination of quantum resources is shown to be a Galilean invariant.
We show that the notion of physical reality implied by quantum mechanics is not absolute.
arXiv Detail & Related papers (2020-05-19T17:34:11Z) - From a quantum theory to a classical one [117.44028458220427]
We present and discuss a formal approach for describing the quantum to classical crossover.
The method was originally introduced by L. Yaffe in 1982 for tackling large-$N$ quantum field theories.
arXiv Detail & Related papers (2020-04-01T09:16:38Z) - Projection evolution and quantum spacetime [68.8204255655161]
We discuss the problem of time in quantum mechanics.
An idea of construction of a quantum spacetime as a special set of the allowed states is presented.
An example of a structureless quantum Minkowski-like spacetime is also considered.
arXiv Detail & Related papers (2019-10-24T14:54:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.