What is "quantum" about quantum gravity?
- URL: http://arxiv.org/abs/2405.08192v1
- Date: Mon, 13 May 2024 21:19:50 GMT
- Title: What is "quantum" about quantum gravity?
- Authors: Giorgio Torrieri,
- Abstract summary: We argue that if both the equivalence principle and quantum mechanics continue to survive experimental tests, that this favors epistemic'' interpretations of quantum mechanics.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Assuming the validity of the equivalence principle in the quantum regime, we argue that one of the assumptions of the usual definition of quantum mechanics, namely separation between the ``classical'' detector and the ``quantum'' system, must be relaxed. We argue, therefore, that if both the equivalence principle and quantum mechanics continue to survive experimental tests, that this favors ``epistemic'' interpretations of quantum mechanics (where formalism is built around relations between observables) over ``ontic ones'' (assuming the reality of states and wavefunctions). In particular, we show that relational type interpretations can readily accomodate the equivalence principle via a minor modification of the assumptions used to justify the formalism. We qualitatively speculate what a full generally covariant quantum dynamics could look like, and comment on experimental investigations.
Related papers
- Step-by-step derivation of the algebraic structure of quantum mechanics
(or from nondisturbing to quantum correlations by connecting incompatible
observables) [0.0]
This paper provides a step-by-step derivation of the quantum formalism.
It helps us to understand why this formalism is as it is.
arXiv Detail & Related papers (2023-03-08T19:27:24Z) - On the Common Logical Structure of Classical and Quantum Mechanics [0.0]
We show that quantum theory does satisfy the classical distributivity law once the full meaning of quantum propositions is properly taken into account.
We show that the lattice of statistical propositions in classical mechanics follows the same structure, yielding an analogue non-commutative sublattice of classical propositions.
arXiv Detail & Related papers (2022-06-21T18:31:53Z) - On a foundational conceptual principle of quantum mechanics [0.0]
Anton Zeilinger's "foundational conceptual principle" for quantum mechanics is an idealistic principle, which should be replaced by a realistic principle of contextuality.
We argue that the assumption of non-locality is not required to explain quantum correlation.
In contrast to Zeilinger's proposed principle of quantization of information, the principle of contextuality explains it realistically.
arXiv Detail & Related papers (2022-03-26T11:24:14Z) - Quantum realism: axiomatization and quantification [77.34726150561087]
We build an axiomatization for quantum realism -- a notion of realism compatible with quantum theory.
We explicitly construct some classes of entropic quantifiers that are shown to satisfy almost all of the proposed axioms.
arXiv Detail & Related papers (2021-10-10T18:08:42Z) - Quantum indistinguishability through exchangeable desirable gambles [69.62715388742298]
Two particles are identical if all their intrinsic properties, such as spin and charge, are the same.
Quantum mechanics is seen as a normative and algorithmic theory guiding an agent to assess her subjective beliefs represented as (coherent) sets of gambles.
We show how sets of exchangeable observables (gambles) may be updated after a measurement and discuss the issue of defining entanglement for indistinguishable particle systems.
arXiv Detail & Related papers (2021-05-10T13:11:59Z) - Experimental Validation of Fully Quantum Fluctuation Theorems Using
Dynamic Bayesian Networks [48.7576911714538]
Fluctuation theorems are fundamental extensions of the second law of thermodynamics for small systems.
We experimentally verify detailed and integral fully quantum fluctuation theorems for heat exchange using two quantum-correlated thermal spins-1/2 in a nuclear magnetic resonance setup.
arXiv Detail & Related papers (2020-12-11T12:55:17Z) - Operational Resource Theory of Imaginarity [48.7576911714538]
We show that quantum states are easier to create and manipulate if they only have real elements.
As an application, we show that imaginarity plays a crucial role for state discrimination.
arXiv Detail & Related papers (2020-07-29T14:03:38Z) - The Quantum Totalitarian Property and Exact Symmetries [0.0]
We discuss a point, which from time to time has been doubted in the literature.
All symmetries, such as those induced by the energy and momentum conservation laws, hold in quantum physics exactly.
arXiv Detail & Related papers (2020-04-30T23:16:21Z) - From a quantum theory to a classical one [117.44028458220427]
We present and discuss a formal approach for describing the quantum to classical crossover.
The method was originally introduced by L. Yaffe in 1982 for tackling large-$N$ quantum field theories.
arXiv Detail & Related papers (2020-04-01T09:16:38Z) - Quantum Mechanical description of Bell's experiment assumes Locality [91.3755431537592]
Bell's experiment description assumes the (Quantum Mechanics-language equivalent of the classical) condition of Locality.
This result is complementary to a recently published one demonstrating that non-Locality is necessary to describe said experiment.
It is concluded that, within the framework of Quantum Mechanics, there is absolutely no reason to believe in the existence of non-Local effects.
arXiv Detail & Related papers (2020-02-27T15:04:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.