論文の概要: Focus on defocus: bridging the synthetic to real domain gap for depth
estimation
- arxiv url: http://arxiv.org/abs/2005.09623v1
- Date: Tue, 19 May 2020 17:52:37 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-01 14:16:16.546322
- Title: Focus on defocus: bridging the synthetic to real domain gap for depth
estimation
- Title(参考訳): デフォーカスに注目して: 深さ推定のための合成から実領域へのギャップの橋渡し
- Authors: Maxim Maximov, Kevin Galim and Laura Leal-Taix\'e
- Abstract要約: 我々は、ドメイン不変デフォーカスブラーを直接監督として利用することで、合成現実のドメインギャップを埋める問題に取り組む。
我々は、焦点の異なる画像の違いからネットワークが学習することを奨励する置換不変畳み込みニューラルネットワークを使用することで、デフォーカスの手がかりを活用する。
我々は、合成データに基づいてモデルを完全にトレーニングし、それを広範囲の現実世界の画像に直接適用することができる。
- 参考スコア(独自算出の注目度): 9.023847175654602
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Data-driven depth estimation methods struggle with the generalization outside
their training scenes due to the immense variability of the real-world scenes.
This problem can be partially addressed by utilising synthetically generated
images, but closing the synthetic-real domain gap is far from trivial. In this
paper, we tackle this issue by using domain invariant defocus blur as direct
supervision. We leverage defocus cues by using a permutation invariant
convolutional neural network that encourages the network to learn from the
differences between images with a different point of focus. Our proposed
network uses the defocus map as an intermediate supervisory signal. We are able
to train our model completely on synthetic data and directly apply it to a wide
range of real-world images. We evaluate our model on synthetic and real
datasets, showing compelling generalization results and state-of-the-art depth
prediction.
- Abstract(参考訳): データ駆動深度推定法は、実世界のシーンの膨大な変動により、トレーニングシーン外の一般化に苦慮する。
この問題は合成生成画像を利用することで部分的に解決できるが、合成実領域のギャップを閉じることは自明ではない。
本稿では,ドメイン不変デフォーカスブラーを直接監視として利用することにより,この問題に対処する。
我々は,焦点の異なる画像間の差異からネットワークが学習することを奨励する置換不変畳み込みニューラルネットワークを用いて,デフォーカスのヒントを活用する。
提案するネットワークは,中間監視信号としてデフォーカスマップを用いる。
モデルを完全に合成データに基づいてトレーニングし、それを現実世界の幅広い画像に直接適用することが可能です。
我々は,合成および実データを用いたモデルの評価を行い,有意な一般化結果と最先端の深度予測を示す。
関連論文リスト
- Domain Generalization for In-Orbit 6D Pose Estimation [14.624172952608653]
宇宙船のポーズ推定ネットワークのための,エンドツーエンドのニューラルベースアーキテクチャを提案する。
提案手法はドメインギャップを効果的に閉鎖し,SPEED+データセット上で最先端の精度を実現する。
論文 参考訳(メタデータ) (2024-06-17T17:01:20Z) - Deep Domain Adaptation: A Sim2Real Neural Approach for Improving Eye-Tracking Systems [80.62854148838359]
眼球画像のセグメンテーションは、最終視線推定に大きな影響を及ぼす眼球追跡の重要なステップである。
対象視線画像と合成訓練データとの重なり合いを測定するために,次元還元法を用いている。
提案手法は,シミュレーションと実世界のデータサンプルの相違に対処する際の頑健で,性能が向上する。
論文 参考訳(メタデータ) (2024-03-23T22:32:06Z) - Towards Real-World Focus Stacking with Deep Learning [97.34754533628322]
焦点ブラケットを用いた94個の高解像度原画像のバーストからなる新しいデータセットを提案する。
このデータセットは、現実世界のアプリケーションに十分な長さのバーストを処理できるフォーカススタックのための最初のディープラーニングアルゴリズムをトレーニングするために使用される。
論文 参考訳(メタデータ) (2023-11-29T17:49:33Z) - Aberration-Aware Depth-from-Focus [20.956132508261664]
焦点スタックにおける最良焦点フレームの決定に影響を及ぼすオフ軸収差による領域ギャップについて検討する。
次に、収差認識トレーニング(AAT)を通じて、この領域ギャップをブリッジすることを検討する。
我々のアプローチは、異なる位置でレンズ収差をモデル化し、フォーカス距離をモデル化する軽量ネットワークで、従来のネットワークトレーニングパイプラインに統合される。
論文 参考訳(メタデータ) (2023-03-08T15:21:33Z) - Deep Convolutional Pooling Transformer for Deepfake Detection [54.10864860009834]
本研究では,局所的・グローバル的に決定的な画像特徴を取り入れた深部畳み込み変換器を提案する。
具体的には,抽出した特徴を充実させ,有効性を高めるために,畳み込みプーリングと再アテンションを適用した。
提案手法は、内部実験と相互データセット実験の両方において、最先端のベースラインを一貫して上回る。
論文 参考訳(メタデータ) (2022-09-12T15:05:41Z) - Grasp-Oriented Fine-grained Cloth Segmentation without Real Supervision [66.56535902642085]
本稿では, 深度画像のみを用いて, 変形した衣服のきめ細かい領域検出の問題に取り組む。
最大で6つの意味領域を定義し, 首の縁, スリーブカフ, ヘム, 上と下をつかむ点を含む。
これらの部品のセグメント化とラベル付けを行うために,U-net ベースのネットワークを導入する。
合成データのみを用いてネットワークをトレーニングし、提案したDAが実データでトレーニングしたモデルと競合する結果が得られることを示す。
論文 参考訳(メタデータ) (2021-10-06T16:31:20Z) - Unsupervised Metric Relocalization Using Transform Consistency Loss [66.19479868638925]
メートル法再ローカライズを行うためのトレーニングネットワークは、従来、正確な画像対応が必要である。
地図内のクエリ画像のローカライズは、登録に使用される参照画像に関係なく、同じ絶対的なポーズを与えるべきである。
提案手法は, 限られた地下構造情報が得られる場合に, 他の教師あり手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2020-11-01T19:24:27Z) - Domain Decluttering: Simplifying Images to Mitigate Synthetic-Real
Domain Shift and Improve Depth Estimation [16.153683223016973]
本研究では,実際の画像における領域外領域の特定と削除を学習するアテンションモジュールを開発する。
削除された領域を視覚化することで、合成と実際のドメインギャップに関する解釈可能な洞察が得られる。
論文 参考訳(メタデータ) (2020-02-27T14:28:56Z) - Focus on Semantic Consistency for Cross-domain Crowd Understanding [34.560447389853614]
いくつかのドメイン適応アルゴリズムは、合成データでモデルをトレーニングすることでそれを解放しようとする。
その結果,背景領域における推定誤差が既存手法の性能を阻害していることが判明した。
本稿では,ドメイン適応手法を提案する。
論文 参考訳(メタデータ) (2020-02-20T08:51:05Z) - Image Fine-grained Inpainting [89.17316318927621]
拡張畳み込みの密結合を利用してより大きく効果的な受容場を得る一段階モデルを提案する。
この効率的なジェネレータをよく訓練するために、頻繁に使用されるVGG特徴整合損失を除いて、新しい自己誘導回帰損失を設計する。
また、局所的・グローバルな分枝を持つ識別器を用いて、局所的・グローバルな内容の整合性を確保する。
論文 参考訳(メタデータ) (2020-02-07T03:45:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。