A Novel Tensor Factorization-Based Method with Robustness to Inaccurate
Rank Estimation
- URL: http://arxiv.org/abs/2305.11458v1
- Date: Fri, 19 May 2023 06:26:18 GMT
- Title: A Novel Tensor Factorization-Based Method with Robustness to Inaccurate
Rank Estimation
- Authors: Jingjing Zheng, Wenzhe Wang, Xiaoqin Zhang, Xianta Jiang
- Abstract summary: We propose a new tensor norm with a dual low-rank constraint, which utilizes the low-rank prior and rank information at the same time.
It is proven theoretically that the resulting tensor completion model can effectively avoid performance degradation caused by inaccurate rank estimation.
Based on this, the total cost at each iteration of the optimization algorithm is reduced to $mathcalO(n3log n +kn3)$ from $mathcalO(n4)$ achieved with standard methods.
- Score: 9.058215418134209
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This study aims to solve the over-reliance on the rank estimation strategy in
the standard tensor factorization-based tensor recovery and the problem of a
large computational cost in the standard t-SVD-based tensor recovery. To this
end, we proposes a new tensor norm with a dual low-rank constraint, which
utilizes the low-rank prior and rank information at the same time. In the
proposed tensor norm, a series of surrogate functions of the tensor tubal rank
can be used to achieve better performance in harness low-rankness within tensor
data. It is proven theoretically that the resulting tensor completion model can
effectively avoid performance degradation caused by inaccurate rank estimation.
Meanwhile, attributed to the proposed dual low-rank constraint, the t-SVD of a
smaller tensor instead of the original big one is computed by using a sample
trick. Based on this, the total cost at each iteration of the optimization
algorithm is reduced to $\mathcal{O}(n^3\log n +kn^3)$ from $\mathcal{O}(n^4)$
achieved with standard methods, where $k$ is the estimation of the true tensor
rank and far less than $n$. Our method was evaluated on synthetic and
real-world data, and it demonstrated superior performance and efficiency over
several existing state-of-the-art tensor completion methods.
Related papers
- Scalable CP Decomposition for Tensor Learning using GPU Tensor Cores [47.87810316745786]
We propose a compression-based tensor decomposition framework, namely the exascale-tensor, to support exascale tensor decomposition.
Compared to the baselines, the exascale-tensor supports 8,000x larger tensors and a speedup up to 6.95x.
We also apply our method to two real-world applications, including gene analysis and tensor layer neural networks.
arXiv Detail & Related papers (2023-11-22T21:04:59Z) - Truncated tensor Schatten p-norm based approach for spatiotemporal
traffic data imputation with complicated missing patterns [77.34726150561087]
We introduce four complicated missing patterns, including missing and three fiber-like missing cases according to the mode-drivenn fibers.
Despite nonity of the objective function in our model, we derive the optimal solutions by integrating alternating data-mputation method of multipliers.
arXiv Detail & Related papers (2022-05-19T08:37:56Z) - Robust M-estimation-based Tensor Ring Completion: a Half-quadratic
Minimization Approach [14.048989759890475]
We develop a robust approach to tensor ring completion that uses an M-estimator as its error statistic.
We present two HQ-based algorithms based on truncated singular value decomposition and matrix factorization.
arXiv Detail & Related papers (2021-06-19T04:37:50Z) - Augmented Tensor Decomposition with Stochastic Optimization [46.16865811396394]
Real-world tensor data are usually high-ordered and have large dimensions with millions or billions of entries.
It is expensive to decompose the whole tensor with traditional algorithms.
This paper proposes augmented tensor decomposition, which effectively incorporates data augmentations to boost downstream classification.
arXiv Detail & Related papers (2021-06-15T06:29:05Z) - MTC: Multiresolution Tensor Completion from Partial and Coarse
Observations [49.931849672492305]
Existing completion formulation mostly relies on partial observations from a single tensor.
We propose an efficient Multi-resolution Completion model (MTC) to solve the problem.
arXiv Detail & Related papers (2021-06-14T02:20:03Z) - Scaling and Scalability: Provable Nonconvex Low-Rank Tensor Estimation
from Incomplete Measurements [30.395874385570007]
A fundamental task is to faithfully recover tensors from highly incomplete measurements.
We develop an algorithm to directly recover the tensor factors in the Tucker decomposition.
We show that it provably converges at a linear independent rate of the ground truth tensor for two canonical problems.
arXiv Detail & Related papers (2021-04-29T17:44:49Z) - Robust Low-tubal-rank Tensor Completion based on Tensor Factorization
and Maximum Correntopy Criterion [12.02023514105999]
We propose a new objective function for low-tubal-rank tensor completion, which uses correntropy as the error measure to mitigate the effect of the outliers.
Numerical results using both synthetic and real data demonstrate the robust and superior performance of the proposed algorithms.
arXiv Detail & Related papers (2020-10-22T13:56:55Z) - Beyond Lazy Training for Over-parameterized Tensor Decomposition [69.4699995828506]
We show that gradient descent on over-parametrized objective could go beyond the lazy training regime and utilize certain low-rank structure in the data.
Our results show that gradient descent on over-parametrized objective could go beyond the lazy training regime and utilize certain low-rank structure in the data.
arXiv Detail & Related papers (2020-10-22T00:32:12Z) - Tensor completion via nonconvex tensor ring rank minimization with
guaranteed convergence [16.11872681638052]
In recent studies, the tensor ring (TR) rank has shown high effectiveness in tensor completion.
A recently proposed TR rank is based on capturing the structure within the weighted sum penalizing the singular value equally.
In this paper, we propose to use the logdet-based function as a non smooth relaxation for solutions practice.
arXiv Detail & Related papers (2020-05-14T03:13:17Z) - Learning Low-rank Deep Neural Networks via Singular Vector Orthogonality
Regularization and Singular Value Sparsification [53.50708351813565]
We propose SVD training, the first method to explicitly achieve low-rank DNNs during training without applying SVD on every step.
We empirically show that SVD training can significantly reduce the rank of DNN layers and achieve higher reduction on computation load under the same accuracy.
arXiv Detail & Related papers (2020-04-20T02:40:43Z) - Tensor denoising and completion based on ordinal observations [11.193504036335503]
We consider the problem of low-rank tensor estimation from possibly incomplete, ordinal-valued observations.
We propose a multi-linear cumulative link model, develop a rank-constrained M-estimator, and obtain theoretical accuracy guarantees.
We show that the proposed estimator is minimax optimal under the class of low-rank models.
arXiv Detail & Related papers (2020-02-16T07:09:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.