論文の概要: Self-supervised Dynamic CT Perfusion Image Denoising with Deep Neural
Networks
- arxiv url: http://arxiv.org/abs/2005.09766v1
- Date: Tue, 19 May 2020 21:44:07 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-01 13:59:24.924883
- Title: Self-supervised Dynamic CT Perfusion Image Denoising with Deep Neural
Networks
- Title(参考訳): 深部ニューラルネットワークを用いた自己監督型ダイナミックCT灌流画像
- Authors: Dufan Wu, Hui Ren, Quanzheng Li
- Abstract要約: ダイナミックCT(Dynamic Computed Tomography, CTP)は急性期脳梗塞の診断と評価に有望なアプローチである。
脳小葉の血行動態のパラメトリックマップは、脳内のヨウ素化コントラストの第1パスのCTスキャンから算出される。
診断の信頼性を高めるためには, 画像診断が必要であり, 繰り返しスキャンによる高放射線曝露により, 日常的用途の灌流量を削減する必要がある。
- 参考スコア(独自算出の注目度): 6.167259271197635
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Dynamic computed tomography perfusion (CTP) imaging is a promising approach
for acute ischemic stroke diagnosis and evaluation. Hemodynamic parametric maps
of cerebral parenchyma are calculated from repeated CT scans of the first pass
of iodinated contrast through the brain. It is necessary to reduce the dose of
CTP for routine applications due to the high radiation exposure from the
repeated scans, where image denoising is necessary to achieve a reliable
diagnosis. In this paper, we proposed a self-supervised deep learning method
for CTP denoising, which did not require any high-dose reference images for
training. The network was trained by mapping each frame of CTP to an estimation
from its adjacent frames. Because the noise in the source and target was
independent, this approach could effectively remove the noise. Being free from
high-dose training images granted the proposed method easier adaptation to
different scanning protocols. The method was validated on both simulation and a
public real dataset. The proposed method achieved improved image quality
compared to conventional denoising methods. On the real data, the proposed
method also had improved spatial resolution and contrast-to-noise ratio
compared to supervised learning which was trained on the simulation data
- Abstract(参考訳): dynamic ct perfusion (ctp) imagingは急性期脳梗塞の診断と評価に有望なアプローチである。
脳小葉の血行力学的パラメトリックマップは、脳内のヨウ素化コントラストの第1パスの繰り返しctスキャンから計算される。
画像診断を行うには, 画像診断が必要であるため, 繰り返しスキャンによる高放射線曝露による日常的用途におけるCTPの線量削減が必要である。
本稿では,高用量参照画像を必要としないCTP復調のための自己教師型深層学習手法を提案する。
ネットワークは、CTPの各フレームを隣接するフレームからの推定にマッピングすることで訓練された。
ソースとターゲットのノイズは独立しているため、このアプローチは効果的にノイズを取り除くことができる。
高用量トレーニング画像がないため、提案手法は異なる走査プロトコルに容易に適応できる。
この手法は、シミュレーションとパブリックリアルデータセットの両方で検証された。
提案手法は従来の復調法に比べて画質が向上した。
実データでは,シミュレーションデータから学習した教師付き学習と比較して,空間分解能とコントラスト対雑音比が向上した。
関連論文リスト
- WIA-LD2ND: Wavelet-based Image Alignment for Self-supervised Low-Dose CT Denoising [74.14134385961775]
我々は, NDCTデータのみを用いて, WIA-LD2NDと呼ばれる新しい自己監督型CT画像復調法を提案する。
WIA-LD2ND は Wavelet-based Image Alignment (WIA) と Frequency-Aware Multi-scale Loss (FAM) の2つのモジュールから構成される。
論文 参考訳(メタデータ) (2024-03-18T11:20:11Z) - Rotational Augmented Noise2Inverse for Low-dose Computed Tomography
Reconstruction [83.73429628413773]
改良された深層学習手法は、画像のノイズを除去する能力を示しているが、正確な地上の真実を必要とする。
畳み込みニューラルネットワーク(CNN)のトレーニングに基礎的真理を必要としないLDCTのための新しい自己教師型フレームワークを提案する。
数値および実験結果から,Sparse View を用いた N2I の再構成精度は低下しており,提案手法は異なる範囲のサンプリング角度で画像品質を向上する。
論文 参考訳(メタデータ) (2023-12-19T22:40:51Z) - Self-supervised OCT Image Denoising with Slice-to-Slice Registration and
Reconstruction [5.972377737617966]
構造保存ノイズ低減のための学習に基づく自己教師手法は,従来の手法よりも優れた性能を示した。
我々は,OCT画像復調に適したエンドツーエンドの自己教師型学習フレームワークを新たに導入する。
論文 参考訳(メタデータ) (2023-11-26T02:45:16Z) - Deep Ultrasound Denoising Using Diffusion Probabilistic Models [5.828784149537374]
従来のデノナイジング法は、しばしばスペックルを除去するが、これは放射線科医や定量的な超音波検査にも有用である。
本稿では,近年のDenoising Diffusion Probabilistic Models (DDPM) に基づく手法を提案する。
スペックルテクスチャを保ちながらノイズを除去し、画像品質を反復的に向上させる。
論文 参考訳(メタデータ) (2023-06-12T21:53:32Z) - The role of noise in denoising models for anomaly detection in medical
images [62.0532151156057]
病理脳病変は脳画像に多彩な外観を示す。
正規データのみを用いた教師なし異常検出手法が提案されている。
空間分解能の最適化と雑音の大きさの最適化により,異なるモデル学習体制の性能が向上することを示す。
論文 参考訳(メタデータ) (2023-01-19T21:39:38Z) - Self-supervised Physics-based Denoising for Computed Tomography [2.2758845733923687]
CT(Computed Tomography)は、患者に固有のX線放射によるリスクを課す。
放射線線量を下げると健康リスクが低下するが、ノイズが増し、組織のコントラストが低下し、CT画像のアーティファクトが生じる。
現代のディープラーニングノイズ抑圧法は、この課題を緩和するが、訓練には低ノイズ高ノイズCT画像ペアが必要である。
我々は,高用量CT投影地真実像を使わずにトレーニング可能な,ノイズ2ノイズD-ANMの自己管理手法を新たに導入した。
論文 参考訳(メタデータ) (2022-11-01T20:58:50Z) - Supervised Denoising of Diffusion-Weighted Magnetic Resonance Images
Using a Convolutional Neural Network and Transfer Learning [0.0]
本稿では,現実的な合成MRデータに基づいて訓練された畳み込みニューラルネットワークを用いて,脳の拡散強調画像(DWI)を識別する手法を提案する。
提案手法の適用により,繰り返しスキャンする回数を減らすことにより,スキャン時間の大幅な削減が可能となった。
論文 参考訳(メタデータ) (2022-06-01T08:14:35Z) - Harmonizing Pathological and Normal Pixels for Pseudo-healthy Synthesis [68.5287824124996]
そこで本研究では,新しいタイプの識別器であるセグメンタを提案し,病変の正確な特定と擬似健康画像の視覚的品質の向上を図っている。
医用画像強調に生成画像を適用し,低コントラスト問題に対処するために拡張結果を利用する。
BraTSのT2モダリティに関する総合的な実験により、提案手法は最先端の手法よりも大幅に優れていることが示された。
論文 参考訳(メタデータ) (2022-03-29T08:41:17Z) - Incremental Cross-view Mutual Distillation for Self-supervised Medical
CT Synthesis [88.39466012709205]
本稿では,スライス間の分解能を高めるために,新しい医療スライスを構築した。
臨床実践において, 根本・中間医療スライスは常に欠落していることを考慮し, 相互蒸留の段階的相互蒸留戦略を導入する。
提案手法は,最先端のアルゴリズムよりも明確なマージンで優れる。
論文 参考訳(メタデータ) (2021-12-20T03:38:37Z) - No-reference denoising of low-dose CT projections [2.7716102039510564]
低線量CT (LDCT) は放射線学において明らかな傾向を呈し, 患者への過剰なX線照射の回避が望まれる。
放射線線量減少は患者のリスクを減少させるが、ノイズレベルを上昇させ、画像の品質と診断値に影響を及ぼす。
1つの緩和オプションは、ディープラーニングアルゴリズムを用いてデノナイジングモデルを訓練するために、低線量および高線量CTプロジェクションのペアを検討することである。
本稿では,従来の自己監督法と異なり,新しい自己監督法を提案する。
論文 参考訳(メタデータ) (2021-02-03T13:51:33Z) - Variational Denoising Network: Toward Blind Noise Modeling and Removal [59.36166491196973]
ブラインド画像のデノイングはコンピュータビジョンにおいて重要な問題であるが、非常に難しい問題である。
本稿では,ノイズ推定と画像デノーミングを併用した新しい変分推論手法を提案する。
論文 参考訳(メタデータ) (2019-08-29T15:54:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。