論文の概要: Assessing the performance of CT image denoisers using Laguerre-Gauss Channelized Hotelling Observer for lesion detection
- arxiv url: http://arxiv.org/abs/2412.02920v1
- Date: Wed, 04 Dec 2024 00:11:19 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-05 15:06:40.125297
- Title: Assessing the performance of CT image denoisers using Laguerre-Gauss Channelized Hotelling Observer for lesion detection
- Title(参考訳): Laguerre-Gauss Channelized Hotelling Observer を用いた病変検出のためのCT画像復調器の性能評価
- Authors: Prabhat Kc, Rongping Zeng,
- Abstract要約: 低放射線下で取得した雑音画像から難聴画像を取り出すための深層学習手法を提案する。
本研究では、視覚的知覚とデータ忠実度に基づくタスク非依存のメトリクスを用いて、ディープラーニングの認知アルゴリズムの画質を評価する。
通常のCT画像と比較すると,PSNR(2.4~3.8dB)やSSIM(0.05~0.11)などの測定値に基づいて,ディープラーニングデノイザーは低用量CTよりも優れていた。
- 参考スコア(独自算出の注目度): 1.0523436939538895
- License:
- Abstract: The remarkable success of deep learning methods in solving computer vision problems, such as image classification, object detection, scene understanding, image segmentation, etc., has paved the way for their application in biomedical imaging. One such application is in the field of CT image denoising, whereby deep learning methods are proposed to recover denoised images from noisy images acquired at low radiation. Outputs derived from applying deep learning denoising algorithms may appear clean and visually pleasing; however, the underlying diagnostic image quality may not be on par with their normal-dose CT counterparts. In this work, we assessed the image quality of deep learning denoising algorithms by making use of visual perception- and data fidelity-based task-agnostic metrics (like the PSNR and the SSIM) - commonly used in the computer vision - and a task-based detectability assessment (the LCD) - extensively used in the CT imaging. When compared against normal-dose CT images, the deep learning denoisers outperformed low-dose CT based on metrics like the PSNR (by 2.4 to 3.8 dB) and SSIM (by 0.05 to 0.11). However, based on the LCD performance, the detectability using quarter-dose denoised outputs was inferior to that obtained using normal-dose CT scans.
- Abstract(参考訳): 画像分類、物体検出、シーン理解、画像セグメンテーションなどのコンピュータビジョン問題の解法におけるディープラーニング手法の顕著な成功は、バイオメディカルイメージングへの応用の道を開いた。
このような応用の1つは、CT画像復調の分野において、低放射線下で取得したノイズ画像からノイズ画像の復調を行う深層学習法が提案されている。
ディープ・ラーニング・デノナイジング・アルゴリズムを適用した成果は清潔で視覚的に喜ばしいように見えるが、診断画像の品質は通常のCTと同等ではないかもしれない。
本研究では,視覚的知覚とデータ忠実度に基づくタスク認識メトリクス(PSNRやSSIMなど)と,CT画像で広く使用されているタスクベース検出可能性評価(LCD)を用いて,ディープラーニングの認知アルゴリズムの画質を評価する。
通常のCT画像と比較すると、深層学習はPSNR(2.4から3.8dB)やSSIM(0.05から0.11)などの指標に基づいて低線量CTより優れていた。
しかし,LCDの性能から,4分の1の分極化出力を用いた検出率は,正常の分極CTスキャンによる検出よりも劣った。
関連論文リスト
- WIA-LD2ND: Wavelet-based Image Alignment for Self-supervised Low-Dose CT Denoising [74.14134385961775]
我々は, NDCTデータのみを用いて, WIA-LD2NDと呼ばれる新しい自己監督型CT画像復調法を提案する。
WIA-LD2ND は Wavelet-based Image Alignment (WIA) と Frequency-Aware Multi-scale Loss (FAM) の2つのモジュールから構成される。
論文 参考訳(メタデータ) (2024-03-18T11:20:11Z) - Rotational Augmented Noise2Inverse for Low-dose Computed Tomography
Reconstruction [83.73429628413773]
改良された深層学習手法は、画像のノイズを除去する能力を示しているが、正確な地上の真実を必要とする。
畳み込みニューラルネットワーク(CNN)のトレーニングに基礎的真理を必要としないLDCTのための新しい自己教師型フレームワークを提案する。
数値および実験結果から,Sparse View を用いた N2I の再構成精度は低下しており,提案手法は異なる範囲のサンプリング角度で画像品質を向上する。
論文 参考訳(メタデータ) (2023-12-19T22:40:51Z) - DEMIST: A deep-learning-based task-specific denoising approach for
myocardial perfusion SPECT [17.994633874783144]
MPI SPECT画像(DEMIST)を識別するタスク固有深層学習手法を提案する。
この手法は、デノゲーションを行う一方で、検出タスクにおけるオブザーバのパフォーマンスに影響を与える特徴を保存するように設計されている。
以上の結果から,MPI SPECTで低位像を呈示するDEMISTのさらなる臨床評価が示唆された。
論文 参考訳(メタデータ) (2023-06-07T08:40:25Z) - Deep learning network to correct axial and coronal eye motion in 3D OCT
retinal imaging [65.47834983591957]
深層学習に基づくニューラルネットワークを用いて,OCTの軸運動とコロナ運動のアーチファクトを1つのスキャンで補正する。
実験結果から, 提案手法は動作アーチファクトを効果的に補正し, 誤差が他の方法よりも小さいことを示す。
論文 参考訳(メタデータ) (2023-05-27T03:55:19Z) - The role of noise in denoising models for anomaly detection in medical
images [62.0532151156057]
病理脳病変は脳画像に多彩な外観を示す。
正規データのみを用いた教師なし異常検出手法が提案されている。
空間分解能の最適化と雑音の大きさの最適化により,異なるモデル学習体制の性能が向上することを示す。
論文 参考訳(メタデータ) (2023-01-19T21:39:38Z) - Self-supervised Physics-based Denoising for Computed Tomography [2.2758845733923687]
CT(Computed Tomography)は、患者に固有のX線放射によるリスクを課す。
放射線線量を下げると健康リスクが低下するが、ノイズが増し、組織のコントラストが低下し、CT画像のアーティファクトが生じる。
現代のディープラーニングノイズ抑圧法は、この課題を緩和するが、訓練には低ノイズ高ノイズCT画像ペアが必要である。
我々は,高用量CT投影地真実像を使わずにトレーニング可能な,ノイズ2ノイズD-ANMの自己管理手法を新たに導入した。
論文 参考訳(メタデータ) (2022-11-01T20:58:50Z) - CNN Filter Learning from Drawn Markers for the Detection of Suggestive
Signs of COVID-19 in CT Images [58.720142291102135]
畳み込みニューラルネットワーク(CNN)のフィルタを推定するために,大規模な注釈付きデータセットやバックプロパゲーションを必要としない手法を提案する。
少数のCT画像に対して、ユーザは、代表的な正常領域と異常領域にマーカーを描画する。
本発明の方法は、カーネルがマークされたものに似た拡張領域に特有な一連の畳み込み層からなる特徴抽出器を生成する。
論文 参考訳(メタデータ) (2021-11-16T15:03:42Z) - Noise Entangled GAN For Low-Dose CT Simulation [32.3869284562502]
高線量CT画像から低線量CT像をシミュレートするためのノイズエンタングルGAN(NE-GAN)。
高線量CT画像からクリーンCT画像とノイズ画像を生成するための2つの手法を提案する。
NE-GANは低線量CT画像の異なるレベルをシミュレートするために提案される。
論文 参考訳(メタデータ) (2021-02-18T21:04:32Z) - Noise Conscious Training of Non Local Neural Network powered by Self
Attentive Spectral Normalized Markovian Patch GAN for Low Dose CT Denoising [20.965610734723636]
深層学習技術は低線量CT(LDCT) denoisingの主流の方法として現れている。
そこで本研究では,CT画像の近傍類似性を利用した新しい畳み込みモジュールを提案する。
次に,CTノイズの非定常性の問題に向けて移動し,LDCT復調のための新しいノイズ認識平均二乗誤差損失を導入した。
論文 参考訳(メタデータ) (2020-11-11T10:44:52Z) - Improving Blind Spot Denoising for Microscopy [73.94017852757413]
自己監督型認知の質を向上させる新しい方法を提案する。
我々は、クリーンな画像がポイントスプレッド関数(PSF)との畳み込みの結果であり、ニューラルネットワークの最後にこの操作を明示的に含んでいると仮定する。
論文 参考訳(メタデータ) (2020-08-19T13:06:24Z) - Self-supervised Dynamic CT Perfusion Image Denoising with Deep Neural
Networks [6.167259271197635]
ダイナミックCT(Dynamic Computed Tomography, CTP)は急性期脳梗塞の診断と評価に有望なアプローチである。
脳小葉の血行動態のパラメトリックマップは、脳内のヨウ素化コントラストの第1パスのCTスキャンから算出される。
診断の信頼性を高めるためには, 画像診断が必要であり, 繰り返しスキャンによる高放射線曝露により, 日常的用途の灌流量を削減する必要がある。
論文 参考訳(メタデータ) (2020-05-19T21:44:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。