Manipulating complex hybrid entanglement and testing multipartite Bell
inequalities in a superconducting circuit
- URL: http://arxiv.org/abs/2005.09849v1
- Date: Wed, 20 May 2020 05:20:57 GMT
- Title: Manipulating complex hybrid entanglement and testing multipartite Bell
inequalities in a superconducting circuit
- Authors: Yuwei Ma, Xiaoxuan Pan, Weizhou Cai, Xianghao Mu, Yuan Xu, Ling Hu,
Weiting Wang, Haiyan Wang, Yi Pu Song, Zhen-Biao Yang, Shi-Biao Zheng and
Luyan Sun
- Abstract summary: We create a five-partite entangled state with three superconducting transmon qubits and two photonic qubits, each encoded in the mesoscopic field of a microwave cavity.
The measured Bell signal is $8.381pm0.038$, surpassing the bound of 8 for a four-partite entanglement imposed by quantum correlations by 10 standard deviations.
- Score: 8.333239829673463
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum correlations in observables of multiple systems not only are of
fundamental interest, but also play a key role in quantum information
processing. As a signature of these correlations, the violation of Bell
inequalities has not been demonstrated with multipartite hybrid entanglement
involving both continuous and discrete variables. Here we create a five-partite
entangled state with three superconducting transmon qubits and two photonic
qubits, each encoded in the mesoscopic field of a microwave cavity. We reveal
the quantum correlations among these distinct elements by joint Wigner
tomography of the two cavity fields conditional on the detection of the qubits
and by test of a five-partite Bell inequality. The measured Bell signal is
$8.381\pm0.038$, surpassing the bound of 8 for a four-partite entanglement
imposed by quantum correlations by 10 standard deviations, demonstrating the
genuine five-partite entanglement in a hybrid quantum system.
Related papers
- The multimode conditional quantum Entropy Power Inequality and the squashed entanglement of the extreme multimode bosonic Gaussian channels [53.253900735220796]
Inequality determines the minimum conditional von Neumann entropy of the output of the most general linear mixing of bosonic quantum modes.
Bosonic quantum systems constitute the mathematical model for the electromagnetic radiation in the quantum regime.
arXiv Detail & Related papers (2024-10-18T13:59:50Z) - Probing many-body Bell correlation depth with superconducting qubits [17.3215930037341]
We report an experimental certification of genuine multipartite Bell correlations, which signal nonlocality in quantum many-body systems.
In particular, we employ energy as a Bell correlation witness and variationally decrease the energy of a many-body system across a hierarchy of thresholds.
Our results establish a viable approach for preparing and certifying multipartite Bell correlations, which provide a finer benchmark beyond entanglement for quantum devices.
arXiv Detail & Related papers (2024-06-25T18:00:00Z) - Quantum error mitigation for Fourier moment computation [49.1574468325115]
This paper focuses on the computation of Fourier moments within the context of a nuclear effective field theory on superconducting quantum hardware.
The study integrates echo verification and noise renormalization into Hadamard tests using control reversal gates.
The analysis, conducted using noise models, reveals a significant reduction in noise strength by two orders of magnitude.
arXiv Detail & Related papers (2024-01-23T19:10:24Z) - Non-Rayleigh signal of interacting quantum particles [0.0]
The dynamics of two interacting quantum particles on a weakly disordered chain is investigated.
The fluctuation profile of the signal can discern whether the interacting parties are behaving like identical bosons, fermions, or distinguishable particles.
arXiv Detail & Related papers (2023-05-02T18:59:37Z) - Observing super-quantum correlations across the exceptional point in a
single, two-level trapped ion [48.7576911714538]
In two-level quantum systems - qubits - unitary dynamics theoretically limit these quantum correlations to $2qrt2$ or 1.5 respectively.
Here, using a dissipative, trapped $40$Ca$+$ ion governed by a two-level, non-Hermitian Hamiltonian, we observe correlation values up to 1.703(4) for the Leggett-Garg parameter $K_3$.
These excesses occur across the exceptional point of the parity-time symmetric Hamiltonian responsible for the qubit's non-unitary, coherent dynamics.
arXiv Detail & Related papers (2023-04-24T19:44:41Z) - Formation of robust bound states of interacting microwave photons [148.37607455646454]
One of the hallmarks of interacting systems is the formation of multi-particle bound states.
We develop a high fidelity parameterizable fSim gate that implements the periodic quantum circuit of the spin-1/2 XXZ model.
By placing microwave photons in adjacent qubit sites, we study the propagation of these excitations and observe their bound nature for up to 5 photons.
arXiv Detail & Related papers (2022-06-10T17:52:29Z) - Bell inequalities for nonlocality depth [0.0]
When three or more particles are considered, quantum correlations can be stronger than correlations generated by so-called hybrid local hidden variable models.
We provide an exhaustive classification of Bell inequalities to characterize various hybrid scenarios in four- and five-particle systems.
arXiv Detail & Related papers (2022-05-09T13:03:03Z) - Experimental violations of Leggett-Garg's inequalities on a quantum
computer [77.34726150561087]
We experimentally observe the violations of Leggett-Garg-Bell's inequalities on single and multi-qubit systems.
Our analysis highlights the limits of nowadays quantum platforms, showing that the above-mentioned correlation functions deviate from theoretical prediction as the number of qubits and the depth of the circuit grow.
arXiv Detail & Related papers (2021-09-06T14:35:15Z) - Synthesizing five-body interaction in a superconducting quantum circuit [12.594562121892576]
We synthesize five-body spin-exchange interaction in a superconducting quantum circuit.
A Greenberger-Horne-Zeilinger state is generated in a single step with fidelity estimated to be $0.685$.
This study paves a way for quantum simulation involving many-body interactions and high excited states of quantum circuits.
arXiv Detail & Related papers (2021-09-01T11:29:12Z) - Quantum chaos driven by long-range waveguide-mediated interactions [125.99533416395765]
We study theoretically quantum states of a pair of photons interacting with a finite periodic array of two-level atoms in a waveguide.
Our calculation reveals two-polariton eigenstates that have a highly irregular wave-function in real space.
arXiv Detail & Related papers (2020-11-24T07:06:36Z) - Entanglement between Distant Macroscopic Mechanical and Spin Systems [0.0]
Entanglement is a vital property of multipartite quantum systems.
Generation of entanglement between macroscopic and disparate systems is an ongoing effort in quantum science.
arXiv Detail & Related papers (2020-03-25T10:41:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.