Non-Rayleigh signal of interacting quantum particles
- URL: http://arxiv.org/abs/2305.01729v1
- Date: Tue, 2 May 2023 18:59:37 GMT
- Title: Non-Rayleigh signal of interacting quantum particles
- Authors: M. F. V. Oliveira, F. A. B. F. de Moura, A. M. C. Souza, M. L. Lyra,
G. M. A. Almeida
- Abstract summary: The dynamics of two interacting quantum particles on a weakly disordered chain is investigated.
The fluctuation profile of the signal can discern whether the interacting parties are behaving like identical bosons, fermions, or distinguishable particles.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The dynamics of two interacting quantum particles on a weakly disordered
chain is investigated. Spatial quantum interference between them is
characterized through the statistics of two-particle transition amplitudes,
related to Hanbury Brown-Twiss correlations in optics. The fluctuation profile
of the signal can discern whether the interacting parties are behaving like
identical bosons, fermions, or distinguishable particles. An analog fully
developed speckle regime displaying Rayleigh statistics is achieved for
interacting bosons. Deviations toward long-tailed distributions echo quantum
correlations akin to non-interacting identical particles. In the limit of
strong interaction, two-particle bound states obey generalized Rician
distributions.
Related papers
- Two-colour photon correlations probe coherent vibronic contributions to
electronic excitation transport under incoherent illumination [41.94295877935867]
We consider a prototype light-harvesting heterodimer exhibiting coherent and collective exciton-vibration interactions.
We show that coherent vibronic mechanisms strongly affect the asymmetries characteristic of time-resolved photon cross-correlations.
We discuss how such second-order correlation asymmetry establishes important connections between coherent vibronic interactions, directional exciton population transport, and violation of quantum detailed balance.
arXiv Detail & Related papers (2024-02-29T19:00:05Z) - On the Preservation and Manifestation of Quantum Entanglement [0.0]
Bell experiments have confirmed that quantum entanglement is an inseparable correlation but there is no faster-than-light influence when a local measurement is performed.
We show here that even though the inseparable correlation may be initially created by previous physical interaction between the two particles, the preservation and manifestation of such inseparable correlation are achieved through extremizing an information metric.
arXiv Detail & Related papers (2023-11-10T07:33:13Z) - Signatures of Quantum Chaos and fermionization in the incoherent
transport of bosonic carriers in the Bose-Hubbard chain [0.0]
We analyse the stationary current of Bose particles across the Bose-Hubbard chain connected to a battery.
It is shown that the current magnitude drastically decreases as the strength of inter-particle interactions exceeds the critical value.
arXiv Detail & Related papers (2023-07-14T07:55:37Z) - Bound state of distant photons in waveguide quantum electrodynamics [137.6408511310322]
Quantum correlations between distant particles remain enigmatic since the birth of quantum mechanics.
We predict a novel kind of bound quantum state in the simplest one-dimensional setup of two interacting particles in a box.
Such states could be realized in the waveguide quantum electrodynamics platform.
arXiv Detail & Related papers (2023-03-17T09:27:02Z) - Topologically bound states, non-Hermitian skin effect and flat bands,
induced by two-particle interaction [91.3755431537592]
We study theoretically repelling quantum states of two spinless particles in a one-dimensional tight-binding model.
We demonstrate, that when the particles are not identical, their interaction drives nontrivial correlated two-particle states.
arXiv Detail & Related papers (2022-11-11T07:34:54Z) - Formation of robust bound states of interacting microwave photons [148.37607455646454]
One of the hallmarks of interacting systems is the formation of multi-particle bound states.
We develop a high fidelity parameterizable fSim gate that implements the periodic quantum circuit of the spin-1/2 XXZ model.
By placing microwave photons in adjacent qubit sites, we study the propagation of these excitations and observe their bound nature for up to 5 photons.
arXiv Detail & Related papers (2022-06-10T17:52:29Z) - Interference dynamics of matter-waves of SU($N$) fermions [0.0]
We analyze the two main physical observables related to the momenta of strongly correlated SU($N$) fermions in ring-shaped lattices pierced by an effective magnetic flux.
We find that both homodyne and self-heterodyne interference display a specific dependence on the structure of the Fermi distribution and particles' correlations.
arXiv Detail & Related papers (2022-06-06T18:00:01Z) - Quantum correlations, entanglement spectrum and coherence of
two-particle reduced density matrix in the Extended Hubbard Model [62.997667081978825]
We study the ground state properties of the one-dimensional extended Hubbard model at half-filling.
In particular, in the superconducting region, we obtain that the entanglement spectrum signals a transition between a dominant singlet (SS) to triplet (TS) pairing ordering in the system.
arXiv Detail & Related papers (2021-10-29T21:02:24Z) - Observation-dependent suppression and enhancement of two-photon
coincidences by tailored losses [68.8204255655161]
Hong-Ou-Mandel (HOM) effect can lead to a perfect suppression of two-particle coincidences between the output ports of a balanced beam splitter.
In this work, we demonstrate experimentally that the two-particle coincidence statistics of two bosons can instead be seamlessly tuned to substantial enhancement.
Our findings reveal a new approach to harnessing non-Hermitian settings for the manipulation of multi-particle quantum states.
arXiv Detail & Related papers (2021-05-12T06:47:35Z) - Exchange-Mediated Mutual Correlation and Dephasing in Free-Electron and
Light Interactions [0.0]
Correlations between quantum particles such as entanglement can be exploited to speed up computational algorithms or enable secure cryptography.
We will show that the exchange term has a substantial role in transferring the information between two mutually spin-correlated electrons.
Our findings might facilitate fermionic matter-wave interferometry experiments.
arXiv Detail & Related papers (2021-02-15T10:23:34Z) - Quantum walks of interacting Mott insulator defects with three-body
interactions [0.0]
We analyze the quantum walk of interacting defects on top of an uniform bosonic Mott insulator at unit filling in an one dimensional graph.
The case of two particles exhibits interesting phenomenon of quantum walk reversal as a function of additional onsite three-body attractive interactions.
arXiv Detail & Related papers (2020-01-23T14:05:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.