Disorder-assisted excitation localization in chirally coupled quantum
emitters
- URL: http://arxiv.org/abs/2005.09855v1
- Date: Wed, 20 May 2020 05:58:37 GMT
- Title: Disorder-assisted excitation localization in chirally coupled quantum
emitters
- Authors: H. H. Jen
- Abstract summary: One-dimensional quantum emitters with chiral couplings can exhibit nonreciprocal decay channels.
We find an interaction-driven re-entrant behavior of the localization phase and a reduction of level repulsion under strong disorder.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: One-dimensional quantum emitters with chiral couplings can exhibit
nonreciprocal decay channels, along with light-induced dipole-dipole
interactions mediated via an atom-waveguide interface. When the position
disorders are introduced to such atomic array, we are able to identify the
dynamical phase transition from excitation delocalization to localization, with
an interplay between the directionality of decay rates and the strength of
light-induced dipole-dipole interactions. Deep in the localization phase, its
characteristic length decreases and saturates toward a reciprocal coupling
regime, leading to a system dynamics whose ergodicity is strongly broken. We
also find an interaction-driven re-entrant behavior of the localization phase
and a reduction of level repulsion under strong disorder. The former coincides
with a drop in the exponent of power-law decaying von Neumann entropy, which
gives insights to a close relation between the preservation of entanglement and
nonequilibrium dynamics in open quantum systems, while the latter presents a
distinct narrow distribution of gap ratios in this particular disordered
system.
Related papers
- Dephasing-assisted diffusive dynamics in superconducting quantum circuits [14.808613294313902]
We first demonstrate the diffusive dynamics assisted by controlled dephasing noise in superconducting quantum circuits.
We show that dephasing can enhance localization in a superconducting qubit array with quasiperiodic order.
By preparing different excitation distributions in the qubit array, we observe that a more localized initial state relaxes to a uniformly distributed mixed state faster with dephasing noise.
arXiv Detail & Related papers (2024-11-23T14:14:36Z) - Attractive-repulsive interaction in coupled quantum oscillators [14.37149160708975]
We find an interesting symmetry-breaking transition from quantum limit cycle oscillation to quantum inhomogeneous steady state.
This transition is contrary to the previously known symmetry-breaking transition from quantum homogeneous to inhomogeneous steady state.
Remarkably, we find the generation of entanglement associated with the symmetry-breaking transition that has no analogue in the classical domain.
arXiv Detail & Related papers (2024-08-23T10:45:19Z) - Propagation of light in cold emitter ensembles with quantum position
correlations due to static long-range dipolar interactions [0.0]
We analyze the scattering of light from dipolar emitters whose disordered positions exhibit correlations induced by static, long-range dipole-dipole interactions.
The quantum-mechanical position correlations are calculated for zero temperature bosonic atoms or molecules using variational and diffusion quantum Monte Carlo methods.
For stationary atoms in dense ensembles in the limit of low light intensity, the simulations yield solutions for the optical responses to all orders of position correlation functions that involve electronic ground and excited states.
arXiv Detail & Related papers (2023-10-24T20:02:40Z) - Atomic excitation delocalization at the clean to disordered interface in
a chirally-coupled atomic array [0.0]
In one-dimensional quantum emitter systems, the dynamics of atomic excitations are influenced by the collective coupling between emitters.
By introducing positional disorders in a portion of the atomic array, we investigate the delocalization phenomena at the interface between disordered zone and clean zone.
arXiv Detail & Related papers (2023-09-27T02:05:11Z) - Dispersive Non-reciprocity between a Qubit and a Cavity [24.911532779175175]
We present an experimental study of a non-reciprocal dispersive-type interaction between a transmon qubit and a superconducting cavity.
We show that the qubit-cavity dynamics is well-described in a wide parameter regime by a simple non-reciprocal master-equation model.
arXiv Detail & Related papers (2023-07-07T17:19:18Z) - Dipolar quantum solids emerging in a Hubbard quantum simulator [45.82143101967126]
Long-range and anisotropic interactions promote rich spatial structure in quantum mechanical many-body systems.
We show that novel strongly correlated quantum phases can be realized using long-range dipolar interaction in optical lattices.
This work opens the door to quantum simulations of a wide range of lattice models with long-range and anisotropic interactions.
arXiv Detail & Related papers (2023-06-01T16:49:20Z) - Entanglement and localization in long-range quadratic Lindbladians [49.1574468325115]
Signatures of localization have been observed in condensed matter and cold atomic systems.
We propose a model of one-dimensional chain of non-interacting, spinless fermions coupled to a local ensemble of baths.
We show that the steady state of the system undergoes a localization entanglement phase transition by tuning $p$ which remains stable in the presence of coherent hopping.
arXiv Detail & Related papers (2023-03-13T12:45:25Z) - Tuning long-range fermion-mediated interactions in cold-atom quantum
simulators [68.8204255655161]
Engineering long-range interactions in cold-atom quantum simulators can lead to exotic quantum many-body behavior.
Here, we propose several tuning knobs, accessible in current experimental platforms, that allow to further control the range and shape of the mediated interactions.
arXiv Detail & Related papers (2022-03-31T13:32:12Z) - Quantum correlations of localized atomic excitations in a disordered
atomic chain [0.0]
Atom-waveguide interface mediates significant and long-range light-matter interactions.
We theoretically investigate the excitation localization of atomic excitations under strong position disorders.
arXiv Detail & Related papers (2021-10-21T08:49:08Z) - Crossover from a delocalized to localized atomic excitation in an
atom-waveguide interface [0.0]
atom-waveguide system can support tightly-confined guided modes of light.
We investigate the crossover from a delocalized to localized atomic excitation under long-range dipole-dipole interactions.
Our results provide insights to study the non-ergodic phenomenon in an atom-waveguide interface.
arXiv Detail & Related papers (2020-12-31T07:03:32Z) - Chirality-driven delocalization in disordered waveguide-coupled quantum
arrays [0.0]
We study the competition between directional asymmetric coupling and disorder in a one-dimensional array of quantum emitters chirally coupled through a waveguide mode.
Our findings could be important for the rapidly developing field of the waveguide quantum electrodynamics.
arXiv Detail & Related papers (2020-12-12T18:40:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.