論文の概要: Model Repair: Robust Recovery of Over-Parameterized Statistical Models
- arxiv url: http://arxiv.org/abs/2005.09912v1
- Date: Wed, 20 May 2020 08:41:56 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-01 06:05:52.243764
- Title: Model Repair: Robust Recovery of Over-Parameterized Statistical Models
- Title(参考訳): モデル修復:過パラメータ化統計モデルのロバスト回復
- Authors: Chao Gao and John Lafferty
- Abstract要約: そこでは,データから推定された統計モデルを破損させた統計モデルを復元することが目的である。
モデルを教師付き学習環境に適合させるために使用する応答値ではなく,設計のみを用いてモデルを再ペアリングする手法を提案する。
- 参考スコア(独自算出の注目度): 24.319310729283636
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: A new type of robust estimation problem is introduced where the goal is to
recover a statistical model that has been corrupted after it has been estimated
from data. Methods are proposed for "repairing" the model using only the design
and not the response values used to fit the model in a supervised learning
setting. Theory is developed which reveals that two important ingredients are
necessary for model repair---the statistical model must be over-parameterized,
and the estimator must incorporate redundancy. In particular, estimators based
on stochastic gradient descent are seen to be well suited to model repair, but
sparse estimators are not in general repairable. After formulating the problem
and establishing a key technical lemma related to robust estimation, a series
of results are presented for repair of over-parameterized linear models, random
feature models, and artificial neural networks. Simulation studies are
presented that corroborate and illustrate the theoretical findings.
- Abstract(参考訳): 新しいタイプのロバスト推定問題が導入され、データから推定された後に破損した統計モデルを復元することを目的としている。
教師あり学習環境において,モデルに適合する応答値ではなく,設計のみを用いてモデルを"調整"する手法を提案する。
モデル修復には2つの重要な材料が必要であることを示す理論が開発され、統計モデルは過度にパラメータ化されなければならない。
特に、確率勾配降下に基づく推定器はモデル修復に適しているが、スパース推定器は一般には修理不可能である。
問題を定式化し、ロバストな推定に関する重要な技術的補題を確立した後、過パラメータ化線形モデル、ランダム特徴モデル、人工ニューラルネットワークの修復について一連の結果を示す。
シミュレーション研究により, 理論的知見をコーロボレートし, 示す。
関連論文リスト
- On conditional diffusion models for PDE simulations [53.01911265639582]
スパース観測の予測と同化のためのスコアベース拡散モデルについて検討した。
本稿では,予測性能を大幅に向上させる自動回帰サンプリング手法を提案する。
また,条件付きスコアベースモデルに対する新たなトレーニング戦略を提案する。
論文 参考訳(メタデータ) (2024-10-21T18:31:04Z) - Model Reconstruction Using Counterfactual Explanations: A Perspective From Polytope Theory [9.771997770574947]
本研究は, 対物モデルを用いたモデル再構成を改良する方法について分析する。
我々の主な貢献は、モデル再構成における誤差と対実的なクエリの数の間の新しい理論的関係を導出することである。
論文 参考訳(メタデータ) (2024-05-08T18:52:47Z) - QualEval: Qualitative Evaluation for Model Improvement [82.73561470966658]
モデル改善のための手段として,自動定性評価による定量的スカラー指標を付加するQualEvalを提案する。
QualEvalは強力なLCM推論器と新しいフレキシブルリニアプログラミングソルバを使用して、人間の読みやすい洞察を生成する。
例えば、その洞察を活用することで、Llama 2モデルの絶対性能が最大15%向上することを示す。
論文 参考訳(メタデータ) (2023-11-06T00:21:44Z) - ZhiJian: A Unifying and Rapidly Deployable Toolbox for Pre-trained Model
Reuse [59.500060790983994]
本稿では、PyTorchバックエンドを利用して、モデル再利用のための包括的でユーザフレンドリなツールボックスであるZhiJianを紹介する。
ZhiJianは、PTMによるターゲットアーキテクチャ構築、PTMによるターゲットモデルチューニング、およびPTMに基づく推論を含む、モデル再利用に関するさまざまな視点を統一する新しいパラダイムを提示している。
論文 参考訳(メタデータ) (2023-08-17T19:12:13Z) - fairml: A Statistician's Take on Fair Machine Learning Modelling [0.0]
本稿では,これまでの研究(Scutari, Panero, Proissl 2022)および関連モデルを文献で実装したfairmlパッケージについて述べる。
Fairmlは古典的な統計モデルと ペナル化された回帰結果に基づいて設計されています
フェアネスを強制するために使われる制約は、推定をモデル化することであり、望まれるモデルファミリと各アプリケーションに対するフェアネス定義の混合とマッチングを可能にする。
論文 参考訳(メタデータ) (2023-05-03T09:59:53Z) - Rigorous Assessment of Model Inference Accuracy using Language
Cardinality [5.584832154027001]
我々は,統計的推定を決定論的精度尺度に置き換えることで,モデル精度評価におけるバイアスと不確実性を最小化する体系的アプローチを開発する。
我々は、最先端の推論ツールによって推定されるモデルの精度を評価することによって、我々のアプローチの一貫性と適用性を実験的に実証した。
論文 参考訳(メタデータ) (2022-11-29T21:03:26Z) - Stability of clinical prediction models developed using statistical or
machine learning methods [0.5482532589225552]
臨床予測モデルは、複数の予測器の値に基づいて、個人の特定の健康結果のリスクを推定する。
多くのモデルは、モデルとその予測(推定リスク)の不安定性につながる小さなデータセットを使用して開発されている。
モデルの推定リスクの不安定性は、しばしばかなりのものであり、新しいデータにおける予測の誤校正として現れます。
論文 参考訳(メタデータ) (2022-11-02T11:55:28Z) - Measuring and Reducing Model Update Regression in Structured Prediction
for NLP [31.86240946966003]
後方互換性は、新しいモデルが前者によって正しく処理されたケースに回帰しないことを要求する。
本研究は、構造化予測タスクにおける更新回帰をモデル化する。
本稿では,構造化出力の特性を考慮し,単純かつ効果的なバックワード・コングルエント・リグレード(BCR)を提案する。
論文 参考訳(メタデータ) (2022-02-07T07:04:54Z) - Probabilistic Modeling for Human Mesh Recovery [73.11532990173441]
本稿では,2次元の証拠から3次元の人体復元の問題に焦点を当てた。
我々は,この問題を,入力から3Dポーズの分布へのマッピング学習として再考した。
論文 参考訳(メタデータ) (2021-08-26T17:55:11Z) - On the model-based stochastic value gradient for continuous
reinforcement learning [50.085645237597056]
モデルベースエージェントは,サンプル効率と最終報酬の両方の観点から,最先端のモデルフリーエージェントより優れていることを示す。
以上の結果から,モデルに基づく政策評価がより注目に値することが示唆された。
論文 参考訳(メタデータ) (2020-08-28T17:58:29Z) - Model Reuse with Reduced Kernel Mean Embedding Specification [70.044322798187]
現在のアプリケーションで有用なモデルを見つけるための2段階のフレームワークを提案する。
アップロードフェーズでは、モデルがプールにアップロードされている場合、モデルの仕様としてカーネル平均埋め込み(RKME)を縮小する。
デプロイフェーズでは、RKME仕様の値に基づいて、現在のタスクと事前訓練されたモデルの関連性を測定する。
論文 参考訳(メタデータ) (2020-01-20T15:15:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。