論文の概要: On conditional diffusion models for PDE simulations
- arxiv url: http://arxiv.org/abs/2410.16415v1
- Date: Mon, 21 Oct 2024 18:31:04 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-23 14:29:59.861722
- Title: On conditional diffusion models for PDE simulations
- Title(参考訳): PDEシミュレーションのための条件拡散モデルについて
- Authors: Aliaksandra Shysheya, Cristiana Diaconu, Federico Bergamin, Paris Perdikaris, José Miguel Hernández-Lobato, Richard E. Turner, Emile Mathieu,
- Abstract要約: スパース観測の予測と同化のためのスコアベース拡散モデルについて検討した。
本稿では,予測性能を大幅に向上させる自動回帰サンプリング手法を提案する。
また,条件付きスコアベースモデルに対する新たなトレーニング戦略を提案する。
- 参考スコア(独自算出の注目度): 53.01911265639582
- License:
- Abstract: Modelling partial differential equations (PDEs) is of crucial importance in science and engineering, and it includes tasks ranging from forecasting to inverse problems, such as data assimilation. However, most previous numerical and machine learning approaches that target forecasting cannot be applied out-of-the-box for data assimilation. Recently, diffusion models have emerged as a powerful tool for conditional generation, being able to flexibly incorporate observations without retraining. In this work, we perform a comparative study of score-based diffusion models for forecasting and assimilation of sparse observations. In particular, we focus on diffusion models that are either trained in a conditional manner, or conditioned after unconditional training. We address the shortcomings of existing models by proposing 1) an autoregressive sampling approach that significantly improves performance in forecasting, 2) a new training strategy for conditional score-based models that achieves stable performance over a range of history lengths, and 3) a hybrid model which employs flexible pre-training conditioning on initial conditions and flexible post-training conditioning to handle data assimilation. We empirically show that these modifications are crucial for successfully tackling the combination of forecasting and data assimilation, a task commonly encountered in real-world scenarios.
- Abstract(参考訳): 偏微分方程式(PDE)のモデル化は科学や工学において重要であり、予測からデータ同化のような逆問題までを含む。
しかし、予測を対象とする従来の数値と機械学習のアプローチは、データ同化には最初から適用できない。
近年、拡散モデルが条件生成の強力なツールとして登場し、再学習なしに観察を柔軟に組み込むことができるようになった。
本研究では,スパース観測の予測と同化のためのスコアベース拡散モデルの比較研究を行う。
特に,条件付き学習を行ったり,条件なし学習後に条件付き学習を行ったりした拡散モデルに焦点を当てる。
提案による既存モデルの欠点に対処する。
1)予測性能を著しく向上させる自己回帰サンプリング手法。
2) 一定期間にわたる安定的なパフォーマンスを実現する条件付きスコアベースモデルの新たなトレーニング戦略,
3)データ同化を扱うために,初期条件にフレキシブル事前学習条件とフレキシブル後訓練条件を併用したハイブリッドモデルを提案する。
実世界のシナリオでよく見られる課題である予測とデータ同化の組み合わせに対処するために、これらの修正が重要であることを実証的に示す。
関連論文リスト
- Series-to-Series Diffusion Bridge Model [8.590453584544386]
既存の拡散法を包含する包括的フレームワークを提案する。
拡散に基づく新しい時系列予測モデルであるシリーズ・ツー・シリーズ拡散ブリッジモデル(mathrmS2DBM$)を提案する。
実験の結果,$mathrmS2DBM$はポイントツーポイント予測において優れた性能を示すことがわかった。
論文 参考訳(メタデータ) (2024-11-07T07:37:34Z) - Influence Functions for Scalable Data Attribution in Diffusion Models [52.92223039302037]
拡散モデルは、生成的モデリングに大きな進歩をもたらした。
しかし、彼らの普及はデータ属性と解釈可能性に関する課題を引き起こす。
本稿では,テキスト・インフルエンス・ファンクション・フレームワークを開発することにより,このような課題に対処することを目的とする。
論文 参考訳(メタデータ) (2024-10-17T17:59:02Z) - MITA: Bridging the Gap between Model and Data for Test-time Adaptation [68.62509948690698]
テスト時間適応(TTA)は、モデルの一般化性を高めるための有望なパラダイムとして登場した。
本稿では,Met-In-The-MiddleをベースとしたMITAを提案する。
論文 参考訳(メタデータ) (2024-10-12T07:02:33Z) - Learning Augmentation Policies from A Model Zoo for Time Series Forecasting [58.66211334969299]
本稿では,強化学習に基づく学習可能なデータ拡張手法であるAutoTSAugを紹介する。
限界サンプルを学習可能なポリシーで強化することにより、AutoTSAugは予測性能を大幅に改善する。
論文 参考訳(メタデータ) (2024-09-10T07:34:19Z) - State-observation augmented diffusion model for nonlinear assimilation [6.682908186025083]
生成モデルに基づく新しいデータ駆動同化アルゴリズムを提案する。
我々の状態観測拡張拡散モデル(SOAD)は、非線形物理モデルと観測モデルをより効率的に扱うように設計されている。
論文 参考訳(メタデータ) (2024-07-31T03:47:20Z) - Towards Theoretical Understandings of Self-Consuming Generative Models [56.84592466204185]
本稿では,自己消費ループ内で生成モデルを訓練する新たな課題に取り組む。
我々は,このトレーニングが将来のモデルで学習したデータ分布に与える影響を厳格に評価するための理論的枠組みを構築した。
カーネル密度推定の結果は,混合データトレーニングがエラー伝播に与える影響など,微妙な洞察を与える。
論文 参考訳(メタデータ) (2024-02-19T02:08:09Z) - Predict, Refine, Synthesize: Self-Guiding Diffusion Models for
Probabilistic Time Series Forecasting [10.491628898499684]
時系列の非条件学習拡散モデルであるTSDiffを提案する。
提案する自己誘導機構により、補助的ネットワークやトレーニング手順の変更を必要とせず、推論中に下流タスクに対してTSDiffを条件付けることができる。
本研究では,予測,改良,合成データ生成という3つの時系列タスクにおいて,本手法の有効性を実証する。
論文 参考訳(メタデータ) (2023-07-21T10:56:36Z) - Long-term stability and generalization of observationally-constrained
stochastic data-driven models for geophysical turbulence [0.19686770963118383]
ディープラーニングモデルは、現在の最先端の気象モデルにおける特定のバイアスを軽減することができる。
データ駆動モデルは、再分析(観測データ)製品から利用できない多くのトレーニングデータを必要とします。
決定論的データ駆動予測モデルは、長期的な安定性と非物理的気候の漂流の問題に悩まされる。
本稿では,不完全な気候モデルシミュレーションに基づいて事前学習した畳み込み変分自動エンコーダに基づくデータ駆動モデルを提案する。
論文 参考訳(メタデータ) (2022-05-09T23:52:37Z) - Back2Future: Leveraging Backfill Dynamics for Improving Real-time
Predictions in Future [73.03458424369657]
公衆衛生におけるリアルタイム予測では、データ収集は簡単で要求の多いタスクである。
過去の文献では「バックフィル」現象とそのモデル性能への影響についてはほとんど研究されていない。
我々は、与えられたモデルの予測をリアルタイムで洗練することを目的とした、新しい問題とニューラルネットワークフレームワークBack2Futureを定式化する。
論文 参考訳(メタデータ) (2021-06-08T14:48:20Z) - Model-based Policy Optimization with Unsupervised Model Adaptation [37.09948645461043]
本研究では,不正確なモデル推定による実データとシミュレーションデータのギャップを埋めて,より良いポリシ最適化を実現する方法について検討する。
本稿では,教師なしモデル適応を導入したモデルベース強化学習フレームワークAMPOを提案する。
提案手法は,一連の連続制御ベンチマークタスクにおけるサンプル効率の観点から,最先端の性能を実現する。
論文 参考訳(メタデータ) (2020-10-19T14:19:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。