論文の概要: Range Conditioned Dilated Convolutions for Scale Invariant 3D Object
Detection
- arxiv url: http://arxiv.org/abs/2005.09927v3
- Date: Fri, 22 Jan 2021 14:52:57 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-01 05:23:10.022587
- Title: Range Conditioned Dilated Convolutions for Scale Invariant 3D Object
Detection
- Title(参考訳): スケール不変3次元物体検出のための範囲条件付き拡張畳み込み
- Authors: Alex Bewley, Pei Sun, Thomas Mensink, Dragomir Anguelov, Cristian
Sminchisescu
- Abstract要約: 本稿では,LiDARデータをそのネイティブ表現(範囲画像)に直接処理する新しい3Dオブジェクト検出フレームワークを提案する。
2D畳み込みは、レンジ画像のコンパクト性から、シーンの高密度LiDARデータを効率的に処理することができる。
- 参考スコア(独自算出の注目度): 41.59388513615775
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: This paper presents a novel 3D object detection framework that processes
LiDAR data directly on its native representation: range images. Benefiting from
the compactness of range images, 2D convolutions can efficiently process dense
LiDAR data of a scene. To overcome scale sensitivity in this perspective view,
a novel range-conditioned dilation (RCD) layer is proposed to dynamically
adjust a continuous dilation rate as a function of the measured range.
Furthermore, localized soft range gating combined with a 3D box-refinement
stage improves robustness in occluded areas, and produces overall more accurate
bounding box predictions. On the public large-scale Waymo Open Dataset, our
method sets a new baseline for range-based 3D detection, outperforming
multiview and voxel-based methods over all ranges with unparalleled performance
at long range detection.
- Abstract(参考訳): 本稿では,LiDARデータをそのネイティブ表現(範囲画像)に直接処理する新しい3Dオブジェクト検出フレームワークを提案する。
2D畳み込みは、レンジ画像のコンパクト性から、シーンの高密度LiDARデータを効率的に処理することができる。
この視点では, スケール感度を克服するために, 連続拡張率を測定範囲の関数として動的に調整するために, 新たなレンジコンディション拡張(rcd)層を提案する。
さらに,3次元ソフトレンジゲーティングと3次元ボックスリファインメントステージを組み合わせることで,閉鎖領域のロバスト性を向上し,全体としてより正確なバウンディングボックス予測を実現する。
大規模なWaymo Open Datasetでは,長距離検出において非並列な性能を持つマルチビューおよびボクセルベースの手法より優れた3次元検出のための新しいベースラインを設定した。
関連論文リスト
- What Matters in Range View 3D Object Detection [15.147558647138629]
ライダーベースの知覚パイプラインは複雑なシーンを解釈するために3Dオブジェクト検出モデルに依存している。
過去のレンジビュー文献に提案されている複数の手法を使わずに、レンジビュー3次元オブジェクト検出モデル間の最先端を実現する。
論文 参考訳(メタデータ) (2024-07-23T18:42:37Z) - Uplifting Range-View-based 3D Semantic Segmentation in Real-Time with Multi-Sensor Fusion [18.431017678057348]
Range-View(RV)ベースの3Dポイントクラウドセグメンテーションは、そのコンパクトなデータ形式のために広く採用されている。
しかし、RVベースの手法は、隠蔽された点に対して堅牢なセグメンテーションを提供するには不十分である。
我々は新しいLiDARとカメラレンジビューに基づく3Dポイントクラウドセマンティックセマンティックセマンティック手法(LaCRange)を提案する。
提案手法は,リアルタイム性に加えて,nuScenesベンチマークの最先端結果も実現している。
論文 参考訳(メタデータ) (2024-07-12T21:41:57Z) - Approaching Outside: Scaling Unsupervised 3D Object Detection from 2D Scene [22.297964850282177]
教師なし3次元検出のためのLiDAR-2D Self-paced Learning (LiSe)を提案する。
RGB画像は、正確な2Dローカライゼーションキューを提供するLiDARデータの貴重な補完となる。
本フレームワークでは,適応型サンプリングと弱いモデルアグリゲーション戦略を組み込んだ自己評価学習パイプラインを考案する。
論文 参考訳(メタデータ) (2024-07-11T14:58:49Z) - DiffuBox: Refining 3D Object Detection with Point Diffusion [74.01759893280774]
本研究では,3次元物体の検出と局所化を確保するために,新しい拡散型ボックス精細化手法を提案する。
提案手法は,様々なドメイン適応設定下で評価し,その結果,異なるデータセット間での大幅な改善が示された。
論文 参考訳(メタデータ) (2024-05-25T03:14:55Z) - Find n' Propagate: Open-Vocabulary 3D Object Detection in Urban Environments [67.83787474506073]
我々は,現在のLiDARに基づく3Dオブジェクト検出システムの限界に対処する。
本稿では,3次元OVタスクに対する汎用textscFind n' Propagate アプローチを提案する。
我々は、新しいオブジェクトクラスに対する平均精度(AP)を最大3.97倍に向上させる。
論文 参考訳(メタデータ) (2024-03-20T12:51:30Z) - 3DifFusionDet: Diffusion Model for 3D Object Detection with Robust
LiDAR-Camera Fusion [6.914463996768285]
3DifFusionDetはノイズの多い3Dボックスからターゲットボックスへのノイズ拡散プロセスとして3Dオブジェクトを検出する。
特徴整合戦略の下では、プログレッシブ改良法はロバストLiDAR-Camera融合に重要な貢献をする可能性がある。
実世界の交通物体識別のベンチマークであるKITTIの実験では、3DifFusionDetが以前のよく検討された検出器と比較して好適に動作できることが判明した。
論文 参考訳(メタデータ) (2023-11-07T05:53:09Z) - Improving LiDAR 3D Object Detection via Range-based Point Cloud Density
Optimization [13.727464375608765]
既存の3Dオブジェクト検出器は、遠くにある領域とは対照的に、LiDARセンサーに近い点雲領域でよく機能する傾向にある。
センサ近傍の高密度物体に対する検出モデルには学習バイアスがあり、異なる距離で入力点雲密度を操作するだけで検出性能を向上させることができることを示す。
論文 参考訳(メタデータ) (2023-06-09T04:11:43Z) - AGO-Net: Association-Guided 3D Point Cloud Object Detection Network [86.10213302724085]
ドメイン適応によるオブジェクトの無傷な特徴を関連付ける新しい3D検出フレームワークを提案する。
我々は,KITTIの3D検出ベンチマークにおいて,精度と速度の両面で最新の性能を実現する。
論文 参考訳(メタデータ) (2022-08-24T16:54:38Z) - Cylindrical and Asymmetrical 3D Convolution Networks for LiDAR-based
Perception [122.53774221136193]
運転時のLiDARに基づく認識のための最先端の手法は、しばしば点雲を2D空間に投影し、2D畳み込みによって処理する。
自然な対策として、3Dボクセル化と3D畳み込みネットワークを利用する方法がある。
本研究では,3次元幾何学的パターンを探索するために,円筒状分割と非対称な3次元畳み込みネットワークを設計する,屋外LiDARセグメンテーションのための新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2021-09-12T06:25:11Z) - Reinforced Axial Refinement Network for Monocular 3D Object Detection [160.34246529816085]
モノクロ3次元物体検出は、2次元入力画像から物体の位置と特性を抽出することを目的としている。
従来のアプローチでは、空間から3D境界ボックスをサンプリングし、対象オブジェクトと各オブジェクトの関係を推定するが、有効サンプルの確率は3D空間で比較的小さい。
我々は,まず最初の予測から始めて,各ステップで1つの3dパラメータだけを変えて,基礎的真理に向けて徐々に洗練することを提案する。
これは、いくつかのステップの後に報酬を得るポリシーを設計する必要があるため、最適化するために強化学習を採用します。
論文 参考訳(メタデータ) (2020-08-31T17:10:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。