論文の概要: Improving LiDAR 3D Object Detection via Range-based Point Cloud Density
Optimization
- arxiv url: http://arxiv.org/abs/2306.05663v1
- Date: Fri, 9 Jun 2023 04:11:43 GMT
- ステータス: 処理完了
- システム内更新日: 2023-06-12 14:46:12.447057
- Title: Improving LiDAR 3D Object Detection via Range-based Point Cloud Density
Optimization
- Title(参考訳): レンジベースポイントクラウド密度最適化によるLiDAR3次元物体検出の改善
- Authors: Eduardo R. Corral-Soto, Alaap Grandhi, Yannis Y. He, Mrigank Rochan,
Bingbing Liu
- Abstract要約: 既存の3Dオブジェクト検出器は、遠くにある領域とは対照的に、LiDARセンサーに近い点雲領域でよく機能する傾向にある。
センサ近傍の高密度物体に対する検出モデルには学習バイアスがあり、異なる距離で入力点雲密度を操作するだけで検出性能を向上させることができることを示す。
- 参考スコア(独自算出の注目度): 13.727464375608765
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In recent years, much progress has been made in LiDAR-based 3D object
detection mainly due to advances in detector architecture designs and
availability of large-scale LiDAR datasets. Existing 3D object detectors tend
to perform well on the point cloud regions closer to the LiDAR sensor as
opposed to on regions that are farther away. In this paper, we investigate this
problem from the data perspective instead of detector architecture design. We
observe that there is a learning bias in detection models towards the dense
objects near the sensor and show that the detection performance can be improved
by simply manipulating the input point cloud density at different distance
ranges without modifying the detector architecture and without data
augmentation. We propose a model-free point cloud density adjustment
pre-processing mechanism that uses iterative MCMC optimization to estimate
optimal parameters for altering the point density at different distance ranges.
We conduct experiments using four state-of-the-art LiDAR 3D object detectors on
two public LiDAR datasets, namely Waymo and ONCE. Our results demonstrate that
our range-based point cloud density manipulation technique can improve the
performance of the existing detectors, which in turn could potentially inspire
future detector designs.
- Abstract(参考訳): 近年,LiDARをベースとした3Dオブジェクト検出は,検出器アーキテクチャ設計の進歩と大規模LiDARデータセットの利用可能性により,多くの進歩を遂げている。
既存の3Dオブジェクト検出器は、遠くにある領域とは対照的に、LiDARセンサーに近い点雲領域でよく機能する傾向にある。
本稿では,検出アーキテクチャの設計ではなく,データの観点からこの問題を考察する。
センサ近傍の高密度物体に対する検出モデルには学習バイアスがあることを観察し、検出器アーキテクチャを変更することなく、データ拡張なしに、異なる距離で入力点雲密度を操作するだけで検出性能を向上させることができることを示した。
本稿では,MCMC最適化を反復的に用い,異なる距離で点密度を変更するための最適パラメータを推定する,モデルフリーの点密度調整前処理機構を提案する。
我々は、WaymoとONCEという2つの公開LiDARデータセット上で、4つの最先端LiDARオブジェクト検出器を用いて実験を行う。
提案手法は, 既存の検出器の性能を向上し, 将来の検出器設計に刺激を与える可能性があることを示すものである。
関連論文リスト
- Sparse-to-Dense LiDAR Point Generation by LiDAR-Camera Fusion for 3D Object Detection [9.076003184833557]
2D画像特徴を融合させてLiDARポイントクラウドデータを再構成する新しいフレームワークであるLiDAR-Camera Augmentation Network (LCANet)を提案する。
LCANetは、画像特徴を3D空間に投影し、意味情報をポイントクラウドデータに統合することで、LiDARセンサーからのデータを融合する。
この融合は、しばしばスパースポイントで表される長距離物体の検出におけるLiDARの弱点を効果的に補う。
論文 参考訳(メタデータ) (2024-09-23T13:03:31Z) - Ego-Motion Estimation and Dynamic Motion Separation from 3D Point Clouds
for Accumulating Data and Improving 3D Object Detection [0.1474723404975345]
高解像度レーダーセンサーの1つは、ライダーセンサーと比較して、生成された点雲の空間性である。
このコントリビューションは、View-of-Delftデータセット上のレーダーポイント雲の蓄積制限を分析する。
エゴモーション推定と動的動き補正を応用して物体検出性能を向上させる実験を行った。
論文 参考訳(メタデータ) (2023-08-29T14:53:16Z) - Reviewing 3D Object Detectors in the Context of High-Resolution 3+1D
Radar [0.7279730418361995]
高分解能4D(3+1D)レーダーセンサーは、ディープラーニングに基づくレーダー知覚の研究を行っている。
本研究では,3次元物体検出のためのレーダポイントクラウドで動作するディープラーニングモデルについて検討する。
論文 参考訳(メタデータ) (2023-08-10T10:10:43Z) - An Empirical Analysis of Range for 3D Object Detection [70.54345282696138]
本稿では,長距離検出データセットArgoverse 2.0を用いた遠距離3次元検出の実験的検討を行った。
近接場LiDARの測定は、小さなボクセルによって密度が高く最適に符号化され、遠距離場の測定は疎く、大きなボクセルで符号化されている。
本研究では,33%の効率向上と3.2%のCDSの精度向上を図った。
論文 参考訳(メタデータ) (2023-08-08T05:29:26Z) - AGO-Net: Association-Guided 3D Point Cloud Object Detection Network [86.10213302724085]
ドメイン適応によるオブジェクトの無傷な特徴を関連付ける新しい3D検出フレームワークを提案する。
我々は,KITTIの3D検出ベンチマークにおいて,精度と速度の両面で最新の性能を実現する。
論文 参考訳(メタデータ) (2022-08-24T16:54:38Z) - LiDAR Distillation: Bridging the Beam-Induced Domain Gap for 3D Object
Detection [96.63947479020631]
多くの現実世界の応用において、大量生産されたロボットや車両が使用するLiDARポイントは通常、大規模な公開データセットよりもビームが少ない。
異なるLiDARビームによって誘導される領域ギャップをブリッジして3次元物体検出を行うLiDAR蒸留法を提案する。
論文 参考訳(メタデータ) (2022-03-28T17:59:02Z) - A Lightweight and Detector-free 3D Single Object Tracker on Point Clouds [50.54083964183614]
生のLiDARスキャンにおける物体の点雲は、通常スパースで不完全であるため、正確な目標固有検出を行うのは簡単ではない。
DMTは、複雑な3D検出器の使用を完全に除去する3Dトラッキングネットワークである。
論文 参考訳(メタデータ) (2022-03-08T17:49:07Z) - Anchor-free 3D Single Stage Detector with Mask-Guided Attention for
Point Cloud [79.39041453836793]
我々は、点雲をアンカーフリーで検出する新しい1段3次元検出器を開発した。
ボクセルをベースとしたスパース3D特徴量からスパース2D特徴量マップに変換することでこれを克服する。
検出信頼度スコアとバウンディングボックス回帰の精度との相関性を改善するために,IoUに基づく検出信頼度再校正手法を提案する。
論文 参考訳(メタデータ) (2021-08-08T13:42:13Z) - Deep Continuous Fusion for Multi-Sensor 3D Object Detection [103.5060007382646]
本稿では,LIDARとカメラを併用して高精度な位置検出を実現する3Dオブジェクト検出器を提案する。
我々は,連続畳み込みを利用して画像とlidar特徴マップを異なるレベルの解像度で融合する,エンドツーエンド学習可能なアーキテクチャを設計した。
論文 参考訳(メタデータ) (2020-12-20T18:43:41Z) - Range Conditioned Dilated Convolutions for Scale Invariant 3D Object
Detection [41.59388513615775]
本稿では,LiDARデータをそのネイティブ表現(範囲画像)に直接処理する新しい3Dオブジェクト検出フレームワークを提案する。
2D畳み込みは、レンジ画像のコンパクト性から、シーンの高密度LiDARデータを効率的に処理することができる。
論文 参考訳(メタデータ) (2020-05-20T09:24:43Z) - Boundary-Aware Dense Feature Indicator for Single-Stage 3D Object
Detection from Point Clouds [32.916690488130506]
本稿では,3次元検出器が境界を意識して点雲の最も密集した領域に焦点を合わせるのを支援する普遍モジュールを提案する。
KITTIデータセットの実験により、DENFIはベースライン単段検出器の性能を著しく改善することが示された。
論文 参考訳(メタデータ) (2020-04-01T01:21:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。