論文の概要: Continuous Multiagent Control using Collective Behavior Entropy for
Large-Scale Home Energy Management
- arxiv url: http://arxiv.org/abs/2005.10000v1
- Date: Thu, 14 May 2020 16:07:55 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-03 05:32:25.727583
- Title: Continuous Multiagent Control using Collective Behavior Entropy for
Large-Scale Home Energy Management
- Title(参考訳): 大規模家庭エネルギー管理のための集合行動エントロピーを用いた連続マルチエージェント制御
- Authors: Jianwen Sun, Yan Zheng, Jianye Hao, Zhaopeng Meng, Yang Liu
- Abstract要約: 大規模マイクログリッド上での微粒化制御を実現するために,連続的な動作空間を持つ集合MA-DRLアルゴリズムを提案する。
提案手法は,電力コスト削減と日次ピーク負荷最適化に関する最先端手法を著しく上回っている。
- 参考スコア(独自算出の注目度): 36.82414045535202
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: With the increasing popularity of electric vehicles, distributed energy
generation and storage facilities in smart grid systems, an efficient
Demand-Side Management (DSM) is urgent for energy savings and peak loads
reduction. Traditional DSM works focusing on optimizing the energy activities
for a single household can not scale up to large-scale home energy management
problems. Multi-agent Deep Reinforcement Learning (MA-DRL) shows a potential
way to solve the problem of scalability, where modern homes interact together
to reduce energy consumers consumption while striking a balance between energy
cost and peak loads reduction. However, it is difficult to solve such an
environment with the non-stationarity, and existing MA-DRL approaches cannot
effectively give incentives for expected group behavior. In this paper, we
propose a collective MA-DRL algorithm with continuous action space to provide
fine-grained control on a large scale microgrid. To mitigate the
non-stationarity of the microgrid environment, a novel predictive model is
proposed to measure the collective market behavior. Besides, a collective
behavior entropy is introduced to reduce the high peak loads incurred by the
collective behaviors of all householders in the smart grid. Empirical results
show that our approach significantly outperforms the state-of-the-art methods
regarding power cost reduction and daily peak loads optimization.
- Abstract(参考訳): スマートグリッドシステムにおける電気自動車、分散型エネルギー発電、貯蔵設備の普及に伴い、省エネとピーク負荷削減のために効率的な需要側管理(DSM)が不可欠である。
従来のDSMは、1世帯のエネルギー活動の最適化に重点を置いており、大規模な家庭エネルギー管理の問題にスケールアップできない。
マルチエージェント深層強化学習 (MA-DRL) は, エネルギーコストとピーク負荷削減のバランスを保ちながら, 現代の家庭がエネルギー消費を減らすために連携し, スケーラビリティの問題を解く潜在的方法を示す。
しかし、そのような環境を非定常性で解決することは困難であり、既存のMA-DRLアプローチは期待されるグループ行動に対して効果的なインセンティブを与えることができない。
本稿では,大規模マイクログリッド上での微粒化制御を実現するために,連続的な動作空間を持つ集合MA-DRLアルゴリズムを提案する。
マイクログリッド環境の非定常性を緩和するために,マーケットの集合的挙動を測定する新しい予測モデルを提案する。
さらに,スマートグリッドにおける全世帯の集団行動によって生じるピーク負荷を低減するために,集団行動エントロピーを導入する。
実証実験の結果,本手法は電力コスト削減と日次ピーク負荷最適化に関する最先端手法よりも優れていた。
関連論文リスト
- EnergAIze: Multi Agent Deep Deterministic Policy Gradient for Vehicle to Grid Energy Management [0.0]
本稿では,MARL(Multi-Agent Reinforcement Learning)エネルギー管理フレームワークであるEnergAIzeを紹介する。
ユーザ中心の多目的エネルギー管理を可能にし、各プローサが様々な個人管理目標から選択できるようにする。
EnergAIzeの有効性は、CityLearnシミュレーションフレームワークを用いたケーススタディにより評価された。
論文 参考訳(メタデータ) (2024-04-02T23:16:17Z) - Distributed Energy Management and Demand Response in Smart Grids: A
Multi-Agent Deep Reinforcement Learning Framework [53.97223237572147]
本稿では、自律制御と再生可能エネルギー資源のスマート電力グリッドシステムへの統合のための多エージェント深層強化学習(DRL)フレームワークを提案する。
特に,提案フレームワークは,住宅利用者に対する需要応答 (DR) と分散エネルギー管理 (DEM) を共同で検討している。
論文 参考訳(メタデータ) (2022-11-29T01:18:58Z) - Renewable energy integration and microgrid energy trading using
multi-agent deep reinforcement learning [2.0427610089943387]
マルチエージェント強化学習はハイブリッドエネルギー貯蔵システムを制御するために使用される。
エージェントは、短期、中長期、長期の記憶に適した3種類のエネルギー貯蔵システムを制御することを学ぶ。
電力網に売るのではなく、他のマイクログリッドと取引できることは、電力網の貯蓄を大幅に増加させることが判明した。
論文 参考訳(メタデータ) (2021-11-21T21:11:00Z) - A Multi-Agent Deep Reinforcement Learning Approach for a Distributed
Energy Marketplace in Smart Grids [58.666456917115056]
本稿では,マイクログリッドを支配下に置くために,強化学習に基づくエネルギー市場を提案する。
提案する市場モデルにより,リアルタイムかつ需要に依存した動的価格設定環境が実現され,グリッドコストが低減され,消費者の経済的利益が向上する。
論文 参考訳(メタデータ) (2020-09-23T02:17:51Z) - Intelligent Residential Energy Management System using Deep
Reinforcement Learning [5.532477732693001]
本稿では,仮想エージェントが人間のようにタスクを学習する要求応答のための深層強化学習(DRL)モデルを提案する。
本手法は,負荷ピーク低減のための混合整数線形計画法(MILP)の精度を向上した。
論文 参考訳(メタデータ) (2020-05-28T19:51:22Z) - A Hierarchical Approach to Multi-Energy Demand Response: From
Electricity to Multi-Energy Applications [1.5084441395740482]
本稿では,多くの住宅,商業,産業の消費者の集合体のエネルギー消費を制御する機会を探る。
このアンサンブル制御は、マルチエネルギーインフラシステムのモデリングツールのセットへの現代的な需要応答となる。
論文 参考訳(メタデータ) (2020-05-05T17:17:51Z) - Demand-Side Scheduling Based on Multi-Agent Deep Actor-Critic Learning
for Smart Grids [56.35173057183362]
家庭用家電をネットでスケジュールできるスマートメーターが各家庭に備わっている需要側エネルギー管理の問題点を考察する。
目標は、リアルタイムの料金体系の下で全体のコストを最小化することです。
マルコフゲームとしてスマートグリッド環境の定式化を提案する。
論文 参考訳(メタデータ) (2020-05-05T07:32:40Z) - Risk-Aware Energy Scheduling for Edge Computing with Microgrid: A
Multi-Agent Deep Reinforcement Learning Approach [82.6692222294594]
マイクログリッドを用いたMECネットワークにおけるリスク対応エネルギースケジューリング問題について検討する。
ニューラルネットワークを用いたマルチエージェントディープ強化学習(MADRL)に基づくアドバンテージアクター・クリティック(A3C)アルゴリズムを適用し,その解を導出する。
論文 参考訳(メタデータ) (2020-02-21T02:14:38Z) - Multi-Agent Meta-Reinforcement Learning for Self-Powered and Sustainable
Edge Computing Systems [87.4519172058185]
エッジコンピューティング機能を有するセルフパワー無線ネットワークの効率的なエネルギー分配機構について検討した。
定式化問題を解くために,新しいマルチエージェントメタ強化学習(MAMRL)フレームワークを提案する。
実験の結果、提案されたMAMRLモデルは、再生不可能なエネルギー使用量を最大11%削減し、エネルギーコストを22.4%削減できることが示された。
論文 参考訳(メタデータ) (2020-02-20T04:58:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。