論文の概要: Uncertainty Quantification Using Neural Networks for Molecular Property
Prediction
- arxiv url: http://arxiv.org/abs/2005.10036v1
- Date: Wed, 20 May 2020 13:31:20 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-01 05:14:59.502594
- Title: Uncertainty Quantification Using Neural Networks for Molecular Property
Prediction
- Title(参考訳): ニューラルネットワークによる分子特性予測の不確かさの定量化
- Authors: Lior Hirschfeld, Kyle Swanson, Kevin Yang, Regina Barzilay, Connor W.
Coley
- Abstract要約: 複数の相補的な性能指標を用いて,5つのベンチマークデータセット上で複数の手法を体系的に評価した。
テストしたどのメソッドも他のどのメソッドよりも絶対的に優れているわけではなく、複数のデータセットにまたがって特に信頼性の高いエラーランキングを生成するものもありません。
我々は,既存の技術が他とよく関係しているように見えるものについて,実践的な勧告で結論付けている。
- 参考スコア(独自算出の注目度): 33.34534208450156
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Uncertainty quantification (UQ) is an important component of molecular
property prediction, particularly for drug discovery applications where model
predictions direct experimental design and where unanticipated imprecision
wastes valuable time and resources. The need for UQ is especially acute for
neural models, which are becoming increasingly standard yet are challenging to
interpret. While several approaches to UQ have been proposed in the literature,
there is no clear consensus on the comparative performance of these models. In
this paper, we study this question in the context of regression tasks. We
systematically evaluate several methods on five benchmark datasets using
multiple complementary performance metrics. Our experiments show that none of
the methods we tested is unequivocally superior to all others, and none
produces a particularly reliable ranking of errors across multiple datasets.
While we believe these results show that existing UQ methods are not sufficient
for all common use-cases and demonstrate the benefits of further research, we
conclude with a practical recommendation as to which existing techniques seem
to perform well relative to others.
- Abstract(参考訳): 不確実性定量化(uq)は分子特性予測の重要な構成要素であり、特にモデル予測が実験的な設計を指示し、予期せぬ不確定化が貴重な時間と資源を無駄にする薬物発見への応用において重要である。
uqの必要性は、ますます標準になりつつあるが解釈が難しいニューラルモデルにとって特に深刻である。
UQに対するいくつかのアプローチが文献で提案されているが、これらのモデルの比較性能について明確なコンセンサスはない。
本稿では,この問題を回帰タスクの文脈で検討する。
複数の相補的な性能指標を用いて,5つのベンチマークデータセット上で複数の手法を体系的に評価した。
私たちの実験では、テストしたどの方法も他のどの方法よりも明らかに優れておらず、複数のデータセットにまたがるエラーの信頼性の高いランク付けは行われていません。
これらの結果は,既存のUQ手法がすべての一般的なユースケースに十分ではないことを示すものであり,さらなる研究のメリットを示すものであるが,既存の手法が他とよく関係していると思われるものについては,実践的な勧告で結論付けている。
関連論文リスト
- Legitimate ground-truth-free metrics for deep uncertainty classification scoring [3.9599054392856483]
製造における不確実性定量化(UQ)手法の使用は依然として限られている。
この制限は、UQ基底真理を欠いたUQ手法を検証するという課題によってさらに悪化する。
本稿では,これらの指標を考察し,理論的に良好であり,実際に不確実な基礎的真理に結びついていることを証明する。
論文 参考訳(メタデータ) (2024-10-30T14:14:32Z) - Benchmarking Uncertainty Quantification Methods for Large Language Models with LM-Polygraph [83.90988015005934]
不確実性定量化(英: Uncertainty Quantification、UQ)は、機械学習(ML)アプリケーションにおいて重要なコンポーネントである。
最新のUQベースラインの集合を実装した新しいベンチマークを導入する。
我々は、9つのタスクにわたるUQと正規化技術に関する大規模な実証的研究を行い、最も有望なアプローチを特定した。
論文 参考訳(メタデータ) (2024-06-21T20:06:31Z) - Using Uncertainty Quantification to Characterize and Improve Out-of-Domain Learning for PDEs [44.890946409769924]
ニューラル演算子(NO)は特に有望な量子化として出現している。
本研究では,複数のNOをアンサンブルすることで,高いエラー領域を同定し,不確実性の高い推定を行うことができることを示す。
次に、ProbConservフレームワーク内でこれらのよく校正されたUQ推定を使ってモデルを更新するOperator-ProbConservを紹介します。
論文 参考訳(メタデータ) (2024-03-15T19:21:27Z) - Uncertainty Quantification for Molecular Property Predictions with Graph Neural Architecture Search [2.711812013460678]
本稿では,分子特性予測のための自動不確実性定量化(UQ)手法であるAutoGNNUQを紹介する。
我々のアプローチでは、分散分解を用いてデータ(アラート)とモデル(エステミック)の不確実性を分離し、それらを減らすための貴重な洞察を提供する。
AutoGNNUQは、正確な不確実性定量化が意思決定に不可欠である薬物発見や材料科学などの領域で広く適用可能である。
論文 参考訳(メタデータ) (2023-07-19T20:03:42Z) - MUBen: Benchmarking the Uncertainty of Molecular Representation Models [32.41186397454142]
不確実量化(UQ)法はモデルのキャリブレーションを改善するために用いられる。
我々は、最先端のバックボーン分子表現モデルのための異なるUQ法を評価するMUBenを提案する。
本研究は, バックボーンモデルのUQ選択に関する知見を提供し, 不確実性クリティカルなアプリケーションの研究を容易にする。
論文 参考訳(メタデータ) (2023-06-14T13:06:04Z) - Single-model uncertainty quantification in neural network potentials
does not consistently outperform model ensembles [0.7499722271664145]
ニューラルネットワーク(NN)は、遠く離れた地点であっても、予測に高い信頼性を割り当てることが多い。
不確かさ定量化(英: Uncertainty Quantification、UQ)は、物質系における原子間ポテンシャルのモデル化に使用されるときの課題である。
異なるUQ技術は、新しい情報データを見つけ、堅牢なポテンシャルのためにアクティブな学習ループを駆動することができる。
論文 参考訳(メタデータ) (2023-05-02T19:41:17Z) - In Search of Insights, Not Magic Bullets: Towards Demystification of the
Model Selection Dilemma in Heterogeneous Treatment Effect Estimation [92.51773744318119]
本稿では,異なるモデル選択基準の長所と短所を実験的に検討する。
選択戦略,候補推定器,比較に用いるデータの間には,複雑な相互作用があることを強調した。
論文 参考訳(メタデータ) (2023-02-06T16:55:37Z) - ZigZag: Universal Sampling-free Uncertainty Estimation Through Two-Step Inference [54.17205151960878]
汎用的でデプロイが容易なサンプリング不要のアプローチを導入します。
我々は,最先端手法と同等の信頼性のある不確実性推定を,計算コストを著しく低減した形で生成する。
論文 参考訳(メタデータ) (2022-11-21T13:23:09Z) - Towards Clear Expectations for Uncertainty Estimation [64.20262246029286]
不確実性定量化(UQ)は、信頼できる機械学習(ML)を実現するために不可欠である
ほとんどのUQ手法は、異なる不整合評価プロトコルに悩まされている。
この意見書は、これらの要件を5つの下流タスクを通して指定することで、新たな視点を提供する。
論文 参考訳(メタデータ) (2022-07-27T07:50:57Z) - Performance metrics for intervention-triggering prediction models do not
reflect an expected reduction in outcomes from using the model [71.9860741092209]
臨床研究者はしばしばリスク予測モデルの中から選択し評価する。
振り返りデータから算出される標準メトリクスは、特定の仮定の下でのみモデルユーティリティに関係します。
予測が時間を通して繰り返し配信される場合、標準メトリクスとユーティリティの関係はさらに複雑になる。
論文 参考訳(メタデータ) (2020-06-02T16:26:49Z) - Ambiguity in Sequential Data: Predicting Uncertain Futures with
Recurrent Models [110.82452096672182]
逐次データによる曖昧な予測を扱うために,Multiple hypothesis Prediction(MHP)モデルの拡張を提案する。
また、不確実性を考慮するのに適した曖昧な問題に対する新しい尺度も導入する。
論文 参考訳(メタデータ) (2020-03-10T09:15:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。