Debiased Regression for Root-N-Consistent Conditional Mean Estimation
- URL: http://arxiv.org/abs/2411.11748v3
- Date: Mon, 25 Nov 2024 21:27:16 GMT
- Title: Debiased Regression for Root-N-Consistent Conditional Mean Estimation
- Authors: Masahiro Kato,
- Abstract summary: We introduce a debiasing method for regression estimators, including high-dimensional and nonparametric regression estimators.
Our theoretical analysis demonstrates that the proposed estimator achieves $sqrtn$-consistency and normality under a mild convergence rate condition.
The proposed method offers several advantages, including improved estimation accuracy and simplified construction of confidence intervals.
- Score: 10.470114319701576
- License:
- Abstract: This study introduces a debiasing method for regression estimators, including high-dimensional and nonparametric regression estimators. For example, nonparametric regression methods allow for the estimation of regression functions in a data-driven manner with minimal assumptions; however, these methods typically fail to achieve $\sqrt{n}$-consistency in their convergence rates, and many, including those in machine learning, lack guarantees that their estimators asymptotically follow a normal distribution. To address these challenges, we propose a debiasing technique for nonparametric estimators by adding a bias-correction term to the original estimators, extending the conventional one-step estimator used in semiparametric analysis. Specifically, for each data point, we estimate the conditional expected residual of the original nonparametric estimator, which can, for instance, be computed using kernel (Nadaraya-Watson) regression, and incorporate it as a bias-reduction term. Our theoretical analysis demonstrates that the proposed estimator achieves $\sqrt{n}$-consistency and asymptotic normality under a mild convergence rate condition for both the original nonparametric estimator and the conditional expected residual estimator. Notably, this approach remains model-free as long as the original estimator and the conditional expected residual estimator satisfy the convergence rate condition. The proposed method offers several advantages, including improved estimation accuracy and simplified construction of confidence intervals.
Related papers
- Progression: an extrapolation principle for regression [0.0]
We propose a novel statistical extrapolation principle.
It assumes a simple relationship between predictors and the response at the boundary of the training predictor samples.
Our semi-parametric method, progression, leverages this extrapolation principle and offers guarantees on the approximation error beyond the training data range.
arXiv Detail & Related papers (2024-10-30T17:29:51Z) - Multivariate root-n-consistent smoothing parameter free matching estimators and estimators of inverse density weighted expectations [51.000851088730684]
We develop novel modifications of nearest-neighbor and matching estimators which converge at the parametric $sqrt n $-rate.
We stress that our estimators do not involve nonparametric function estimators and in particular do not rely on sample-size dependent parameters smoothing.
arXiv Detail & Related papers (2024-07-11T13:28:34Z) - Relaxed Quantile Regression: Prediction Intervals for Asymmetric Noise [51.87307904567702]
Quantile regression is a leading approach for obtaining such intervals via the empirical estimation of quantiles in the distribution of outputs.
We propose Relaxed Quantile Regression (RQR), a direct alternative to quantile regression based interval construction that removes this arbitrary constraint.
We demonstrate that this added flexibility results in intervals with an improvement in desirable qualities.
arXiv Detail & Related papers (2024-06-05T13:36:38Z) - Learning to Estimate Without Bias [57.82628598276623]
Gauss theorem states that the weighted least squares estimator is a linear minimum variance unbiased estimation (MVUE) in linear models.
In this paper, we take a first step towards extending this result to non linear settings via deep learning with bias constraints.
A second motivation to BCE is in applications where multiple estimates of the same unknown are averaged for improved performance.
arXiv Detail & Related papers (2021-10-24T10:23:51Z) - Near-optimal inference in adaptive linear regression [60.08422051718195]
Even simple methods like least squares can exhibit non-normal behavior when data is collected in an adaptive manner.
We propose a family of online debiasing estimators to correct these distributional anomalies in at least squares estimation.
We demonstrate the usefulness of our theory via applications to multi-armed bandit, autoregressive time series estimation, and active learning with exploration.
arXiv Detail & Related papers (2021-07-05T21:05:11Z) - Statistical Inference for High-Dimensional Linear Regression with
Blockwise Missing Data [13.48481978963297]
Blockwise missing data occurs when we integrate multisource or multimodality data where different sources or modalities contain complementary information.
We propose a computationally efficient estimator for the regression coefficient vector based on carefully constructed unbiased estimating equations.
Numerical studies and application analysis of the Alzheimer's Disease Neuroimaging Initiative data show that the proposed method performs better and benefits more from unsupervised samples than existing methods.
arXiv Detail & Related papers (2021-06-07T05:12:42Z) - Statistical Inference after Kernel Ridge Regression Imputation under
item nonresponse [0.76146285961466]
We consider a nonparametric approach to imputation using the kernel ridge regression technique and propose consistent variance estimation.
The proposed variance estimator is based on a linearization approach which employs the entropy method to estimate the density ratio.
arXiv Detail & Related papers (2021-01-29T20:46:33Z) - Nonparametric Score Estimators [49.42469547970041]
Estimating the score from a set of samples generated by an unknown distribution is a fundamental task in inference and learning of probabilistic models.
We provide a unifying view of these estimators under the framework of regularized nonparametric regression.
We propose score estimators based on iterative regularization that enjoy computational benefits from curl-free kernels and fast convergence.
arXiv Detail & Related papers (2020-05-20T15:01:03Z) - Estimating Gradients for Discrete Random Variables by Sampling without
Replacement [93.09326095997336]
We derive an unbiased estimator for expectations over discrete random variables based on sampling without replacement.
We show that our estimator can be derived as the Rao-Blackwellization of three different estimators.
arXiv Detail & Related papers (2020-02-14T14:15:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.