Toward scalable simulations of Lattice Gauge Theories on quantum
computers
- URL: http://arxiv.org/abs/2005.10271v1
- Date: Wed, 20 May 2020 18:00:30 GMT
- Title: Toward scalable simulations of Lattice Gauge Theories on quantum
computers
- Authors: Simon V. Mathis, Guglielmo Mazzola, Ivano Tavernelli
- Abstract summary: We provide a resource for simulations of real-time dynamics in lattice gauge theories on arbitrary dimensions.
We study the phenomena of flux-string breaking up to a genuine bi-dimensional model using classical quantum circuits.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The simulation of real-time dynamics in lattice gauge theories is
particularly hard for classical computing due to the exponential scaling of the
required resources. On the other hand, quantum algorithms can potentially
perform the same calculation with a polynomial dependence on the number of
degrees of freedom. A precise estimation is however particularly challenging
for the simulation of lattice gauge theories in arbitrary dimensions, where,
gauge fields are dynamical variables, in addition to the particle fields.
Moreover, there exist several choices for discretizing particles and gauge
fields on a lattice, each of them coming at different prices in terms of qubit
register size and circuit depth. Here we provide a resource counting for
real-time evolution of $U(1)$ gauge theories, such as Quantum Electrodynamics,
on arbitrary dimension using the Wilson fermion representation for the
particles, and the Quantum Link Model approach for the gauge fields. We study
the phenomena of flux-string breaking up to a genuine bi-dimensional model
using classical simulations of the quantum circuits, and discuss the advantages
of our discretization choice in simulation of more challenging $SU(N)$ gauge
theories such as Quantum Chromodynamics.
Related papers
- Simulating Schwinger model dynamics with quasi-one-dimensional qubit arrays [0.0]
We develop a strategy to run Schwinger model dynamics on synthetic quantum spin lattices.
We show that global magnetic field patterns can drive coherent quantum dynamics of the interface equivalent to the lattice Schwinger Hamiltonian.
This work opens up a path for near-term quantum simulators to address questions of immediate relevance to particle physics.
arXiv Detail & Related papers (2024-09-22T17:58:25Z) - Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
Given a quantum circuit containing d tunable RZ gates and G-d Clifford gates, can a learner perform purely classical inference to efficiently predict its linear properties?
We prove that the sample complexity scaling linearly in d is necessary and sufficient to achieve a small prediction error, while the corresponding computational complexity may scale exponentially in d.
We devise a kernel-based learning model capable of trading off prediction error and computational complexity, transitioning from exponential to scaling in many practical settings.
arXiv Detail & Related papers (2024-08-22T08:21:28Z) - Real-space blocking of qubit variables on parallel lattice gauge theory links for quantum simulation [0.0]
lattice gauge theory is mapped onto quantum devices which can be built in the laboratory, or quantum computers.
This work proposes a way to obtain arbitrarily large local Hilbert spaces by using coarse graining of simple, low dimensional qubit systems.
arXiv Detail & Related papers (2023-11-28T06:35:10Z) - Variational quantum simulation of U(1) lattice gauge theories with qudit
systems [0.0]
We map D-dimensional Abelian lattice gauge theories onto qudit systems with local interactions for arbitrary D.
Our proposal can serve as a way of simulating lattice gauge theories, particularly in higher spatial dimensions, with minimal resources.
arXiv Detail & Related papers (2023-07-27T20:04:55Z) - Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
We explore the applicability of quantum-data learning to practical problems in high-energy physics.
We make use of ansatz based on quantum convolutional neural networks and numerically show that it is capable of recognizing quantum phases of ground states.
The observation of non-trivial learning properties demonstrated in these benchmarks will motivate further exploration of the quantum-data learning architecture in high-energy physics.
arXiv Detail & Related papers (2023-06-29T18:00:01Z) - Fermion-qudit quantum processors for simulating lattice gauge theories
with matter [0.0]
We present a complete Rydberg-based architecture, co-designed to digitally simulate the dynamics of general gauge theories.
We show how to prepare hadrons made up of fermionic matter constituents bound by non-abelian gauge fields.
In both cases, we estimate the required resources, showing how quantum devices can be used to calculate experimentally-relevant quantities.
arXiv Detail & Related papers (2023-03-15T15:12:26Z) - Universality of critical dynamics with finite entanglement [68.8204255655161]
We study how low-energy dynamics of quantum systems near criticality are modified by finite entanglement.
Our result establishes the precise role played by entanglement in time-dependent critical phenomena.
arXiv Detail & Related papers (2023-01-23T19:23:54Z) - Quantum emulation of the transient dynamics in the multistate
Landau-Zener model [50.591267188664666]
We study the transient dynamics in the multistate Landau-Zener model as a function of the Landau-Zener velocity.
Our experiments pave the way for more complex simulations with qubits coupled to an engineered bosonic mode spectrum.
arXiv Detail & Related papers (2022-11-26T15:04:11Z) - Variational Adiabatic Gauge Transformation on real quantum hardware for
effective low-energy Hamiltonians and accurate diagonalization [68.8204255655161]
We introduce the Variational Adiabatic Gauge Transformation (VAGT)
VAGT is a non-perturbative hybrid quantum algorithm that can use nowadays quantum computers to learn the variational parameters of the unitary circuit.
The accuracy of VAGT is tested trough numerical simulations, as well as simulations on Rigetti and IonQ quantum computers.
arXiv Detail & Related papers (2021-11-16T20:50:08Z) - Fixed Depth Hamiltonian Simulation via Cartan Decomposition [59.20417091220753]
We present a constructive algorithm for generating quantum circuits with time-independent depth.
We highlight our algorithm for special classes of models, including Anderson localization in one dimensional transverse field XY model.
In addition to providing exact circuits for a broad set of spin and fermionic models, our algorithm provides broad analytic and numerical insight into optimal Hamiltonian simulations.
arXiv Detail & Related papers (2021-04-01T19:06:00Z) - Towards simulating 2D effects in lattice gauge theories on a quantum
computer [1.327151508840301]
We propose an experimental quantum simulation scheme to study ground state properties in two-dimensional quantum electrodynamics (2D QED) using existing quantum technology.
The proposal builds on a formulation of lattice gauge theories as effective spin models in arXiv:2006.14160.
We present two Variational Quantum Eigensolver (VQE) based protocols for the study of magnetic field effects, and for taking an important first step towards computing the running coupling of QED.
arXiv Detail & Related papers (2020-08-21T01:20:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.