Variational quantum simulation of U(1) lattice gauge theories with qudit
systems
- URL: http://arxiv.org/abs/2307.15173v1
- Date: Thu, 27 Jul 2023 20:04:55 GMT
- Title: Variational quantum simulation of U(1) lattice gauge theories with qudit
systems
- Authors: Pavel P. Popov, Michael Meth, Maciej Lewenstein, Philipp Hauke, Martin
Ringbauer, Erez Zohar, Valentin Kasper
- Abstract summary: We map D-dimensional Abelian lattice gauge theories onto qudit systems with local interactions for arbitrary D.
Our proposal can serve as a way of simulating lattice gauge theories, particularly in higher spatial dimensions, with minimal resources.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Lattice gauge theories are fundamental to various fields, including particle
physics, condensed matter, and quantum information theory. Recent progress in
the control of quantum systems allows for studying Abelian lattice gauge
theories in table-top experiments. However, several challenges remain, such as
implementing dynamical fermions in higher spatial dimensions and magnetic field
terms. Here, we map D-dimensional U(1) Abelian lattice gauge theories onto
qudit systems with local interactions for arbitrary D. We propose a variational
quantum simulation scheme for the qudit system with a local Hamiltonian, that
can be implemented on a universal qudit quantum device as the one developed in
[Nat. Phys. 18, 1053-1057 (2022)]. We describe how to implement the variational
imaginary-time evolution protocol for ground state preparation as well as the
variational real-time evolution protocol to simulate non-equilibrium physics on
universal qudit quantum computers, supplemented with numerical simulations. Our
proposal can serve as a way of simulating lattice gauge theories, particularly
in higher spatial dimensions, with minimal resources, regarding both system
sizes and gate count.
Related papers
- Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
We explore the applicability of quantum-data learning to practical problems in high-energy physics.
We make use of ansatz based on quantum convolutional neural networks and numerically show that it is capable of recognizing quantum phases of ground states.
The observation of non-trivial learning properties demonstrated in these benchmarks will motivate further exploration of the quantum-data learning architecture in high-energy physics.
arXiv Detail & Related papers (2023-06-29T18:00:01Z) - Universality of critical dynamics with finite entanglement [68.8204255655161]
We study how low-energy dynamics of quantum systems near criticality are modified by finite entanglement.
Our result establishes the precise role played by entanglement in time-dependent critical phenomena.
arXiv Detail & Related papers (2023-01-23T19:23:54Z) - Neural-Network Quantum States for Periodic Systems in Continuous Space [66.03977113919439]
We introduce a family of neural quantum states for the simulation of strongly interacting systems in the presence of periodicity.
For one-dimensional systems we find very precise estimations of the ground-state energies and the radial distribution functions of the particles.
In two dimensions we obtain good estimations of the ground-state energies, comparable to results obtained from more conventional methods.
arXiv Detail & Related papers (2021-12-22T15:27:30Z) - Quantum simulation of $\phi^4$ theories in qudit systems [53.122045119395594]
We discuss the implementation of quantum algorithms for lattice $Phi4$ theory on circuit quantum electrodynamics (cQED) system.
The main advantage of qudit systems is that its multi-level characteristic allows the field interaction to be implemented only with diagonal single-qudit gates.
arXiv Detail & Related papers (2021-08-30T16:30:33Z) - Thermalization dynamics of a gauge theory on a quantum simulator [6.039858993863839]
Gauge theories form the foundation of modern physics.
We perform quantum simulations of the unitary dynamics of a U(1) symmetric gauge field theory.
We investigate global quantum quenches and the equilibration to a steady state well approximated by a thermal ensemble.
arXiv Detail & Related papers (2021-07-28T18:00:01Z) - Photon-mediated Stroboscopic Quantum Simulation of a $\mathbb{Z}_{2}$
Lattice Gauge Theory [58.720142291102135]
Quantum simulation of lattice gauge theories (LGTs) aims at tackling non-perturbative particle and condensed matter physics.
One of the current challenges is to go beyond 1+1 dimensions, where four-body (plaquette) interactions, not contained naturally in quantum simulating devices, appear.
We show how to prepare the ground state and measure Wilson loops using state-of-the-art techniques in atomic physics.
arXiv Detail & Related papers (2021-07-27T18:10:08Z) - Scalable cold-atom quantum simulator for two-dimensional QED [0.0]
We propose a scalable analog quantum simulator for quantum electrodynamics (QED) in two spatial dimensions.
The setup for the U(1) lattice gauge field theory employs inter-species spin-changing collisions in an ultra-cold atomic mixture trapped in an optical lattice.
arXiv Detail & Related papers (2020-12-18T18:45:55Z) - Quantum simulation of gauge theory via orbifold lattice [47.28069960496992]
We propose a new framework for simulating $textU(k)$ Yang-Mills theory on a universal quantum computer.
We discuss the application of our constructions to computing static properties and real-time dynamics of Yang-Mills theories.
arXiv Detail & Related papers (2020-11-12T18:49:11Z) - Towards simulating 2D effects in lattice gauge theories on a quantum
computer [1.327151508840301]
We propose an experimental quantum simulation scheme to study ground state properties in two-dimensional quantum electrodynamics (2D QED) using existing quantum technology.
The proposal builds on a formulation of lattice gauge theories as effective spin models in arXiv:2006.14160.
We present two Variational Quantum Eigensolver (VQE) based protocols for the study of magnetic field effects, and for taking an important first step towards computing the running coupling of QED.
arXiv Detail & Related papers (2020-08-21T01:20:55Z) - From the Jaynes-Cummings model to non-Abelian gauge theories: a guided
tour for the quantum engineer [0.0]
Non-Abelian lattice gauge theories play a central role in high energy physics, condensed matter and quantum information.
We introduce the necessary formalism in well-known Abelian gauge theories, such as the Jaynes-Cumming model.
We show that certain minimal non-Abelian lattice gauge theories can be mapped to three or four level systems.
arXiv Detail & Related papers (2020-06-01T20:53:36Z) - Toward scalable simulations of Lattice Gauge Theories on quantum
computers [0.0]
We provide a resource for simulations of real-time dynamics in lattice gauge theories on arbitrary dimensions.
We study the phenomena of flux-string breaking up to a genuine bi-dimensional model using classical quantum circuits.
arXiv Detail & Related papers (2020-05-20T18:00:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.