論文の概要: Training Keyword Spotting Models on Non-IID Data with Federated Learning
- arxiv url: http://arxiv.org/abs/2005.10406v2
- Date: Thu, 4 Jun 2020 17:52:52 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-30 22:52:52.217837
- Title: Training Keyword Spotting Models on Non-IID Data with Federated Learning
- Title(参考訳): フェデレーション学習による非IIDデータのキーワードスポッティングモデルの訓練
- Authors: Andrew Hard, Kurt Partridge, Cameron Nguyen, Niranjan Subrahmanya,
Aishanee Shah, Pai Zhu, Ignacio Lopez Moreno, Rajiv Mathews
- Abstract要約: そこで本研究では,フェデレート学習を用いて,高品質なキーワードスポッティングモデルをデバイス上でトレーニング可能であることを示す。
デバイス上のデータの適合に関するアルゴリズム上の制約を克服するため、最適化アルゴリズムの徹底的な実験研究を行う。
教師と学生のトレーニングを調査するために、サンプル(デバイス上のデータにゼロ可視性を持たせること)をラベル付けします。
- 参考スコア(独自算出の注目度): 6.784774147680782
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We demonstrate that a production-quality keyword-spotting model can be
trained on-device using federated learning and achieve comparable false accept
and false reject rates to a centrally-trained model. To overcome the
algorithmic constraints associated with fitting on-device data (which are
inherently non-independent and identically distributed), we conduct thorough
empirical studies of optimization algorithms and hyperparameter configurations
using large-scale federated simulations. To overcome resource constraints, we
replace memory intensive MTR data augmentation with SpecAugment, which reduces
the false reject rate by 56%. Finally, to label examples (given the zero
visibility into on-device data), we explore teacher-student training.
- Abstract(参考訳): 本研究では,本番品質のキーワードスポッティングモデルをフェデレーション学習を用いてデバイス上で訓練し,中央学習モデルと同等の偽受容率と偽拒絶率を達成できることを実証する。
オンデバイスデータの適合に関連するアルゴリズム上の制約を克服するため,大規模フェデレーションシミュレーションを用いて最適化アルゴリズムとハイパーパラメータ構成の徹底的な実証研究を行う。
資源制約を克服するため,メモリ集約型mtrデータ拡張をスペックオーグメントに置き換え,偽の拒絶率を56%削減した。
最後に,サンプルのラベル付け(デバイス上のデータにゼロ可視性を持たせる)を行うために,教師の学習について検討する。
関連論文リスト
- Take the Bull by the Horns: Hard Sample-Reweighted Continual Training
Improves LLM Generalization [165.98557106089777]
大きな言語モデル(LLM)の能力を高めることが大きな課題だ。
本研究は,従来の事前学習データセットを用いたLCMの光連続訓練に関する実証的戦略から始まった。
次に、この戦略をインスタンス重み付け分散ロバスト最適化の原則化されたフレームワークに定式化します。
論文 参考訳(メタデータ) (2024-02-22T04:10:57Z) - Federated Learning with Projected Trajectory Regularization [65.6266768678291]
フェデレーション学習は、ローカルデータを共有せずに、分散クライアントから機械学習モデルの共同トレーニングを可能にする。
連合学習における重要な課題の1つは、クライアントにまたがる識別できない分散データを扱うことである。
本稿では,データ問題に対処するための予測軌道正則化(FedPTR)を備えた新しいフェデレーション学習フレームワークを提案する。
論文 参考訳(メタデータ) (2023-12-22T02:12:08Z) - Filling the Missing: Exploring Generative AI for Enhanced Federated
Learning over Heterogeneous Mobile Edge Devices [72.61177465035031]
ローカルデータのFIMI(FIlling the MIssing)部分を活用することにより,これらの課題に対処する,AIを活用した創発的なフェデレーション学習を提案する。
実験の結果,FIMIはデバイス側エネルギーの最大50%を節約し,目標とするグローバルテスト精度を達成できることがわかった。
論文 参考訳(メタデータ) (2023-10-21T12:07:04Z) - Adaptive Model Pruning and Personalization for Federated Learning over
Wireless Networks [72.59891661768177]
フェデレーション学習(FL)は、データプライバシを保護しながら、エッジデバイス間での分散学習を可能にする。
これらの課題を克服するために、部分的なモデルプルーニングとパーソナライズを備えたFLフレームワークを検討する。
このフレームワークは、学習モデルを、データ表現を学ぶためにすべてのデバイスと共有されるモデルプルーニングと、特定のデバイスのために微調整されるパーソナライズされた部分とで、グローバルな部分に分割する。
論文 参考訳(メタデータ) (2023-09-04T21:10:45Z) - Analysis and Optimization of Wireless Federated Learning with Data
Heterogeneity [72.85248553787538]
本稿では、データの不均一性を考慮した無線FLの性能解析と最適化と、無線リソース割り当てについて述べる。
ロス関数の最小化問題を、長期エネルギー消費と遅延の制約の下で定式化し、クライアントスケジューリング、リソース割り当て、ローカルトレーニングエポック数(CRE)を共同で最適化する。
実世界のデータセットの実験により、提案アルゴリズムは学習精度とエネルギー消費の点で他のベンチマークよりも優れていることが示された。
論文 参考訳(メタデータ) (2023-08-04T04:18:01Z) - Tackling Computational Heterogeneity in FL: A Few Theoretical Insights [68.8204255655161]
我々は、計算異種データの形式化と処理を可能にする新しい集約フレームワークを導入し、分析する。
提案するアグリゲーションアルゴリズムは理論的および実験的予測から広範囲に解析される。
論文 参考訳(メタデータ) (2023-07-12T16:28:21Z) - A Personalized Federated Learning Algorithm: an Application in Anomaly
Detection [0.6700873164609007]
フェデレートラーニング(FL)は、データプライバシと送信問題を克服する有望な方法として最近登場した。
FLでは、異なるデバイスやセンサーから収集されたデータセットを使用して、各学習を集中型モデル(サーバ)と共有するローカルモデル(クライアント)をトレーニングする。
本稿では,PC-FedAvg(Personalized FedAvg, PC-FedAvg)を提案する。
論文 参考訳(メタデータ) (2021-11-04T04:57:11Z) - Federated Ensemble Model-based Reinforcement Learning in Edge Computing [21.840086997141498]
フェデレートラーニング(Federated Learning、FL)は、プライバシ保護のための分散機械学習パラダイムである。
モデルベースRLとアンサンブル知識蒸留をFLに効果的に組み込む新しいFRLアルゴリズムを提案する。
具体的には、FLと知識蒸留を利用して、クライアント向けの動的モデルのアンサンブルを作成し、環境と相互作用することなく、単にアンサンブルモデルを使用することでポリシーを訓練する。
論文 参考訳(メタデータ) (2021-09-12T16:19:10Z) - Towards Heterogeneous Clients with Elastic Federated Learning [45.2715985913761]
フェデレーション学習では、エッジプロセッサやデータウェアハウスなどのデバイスやデータサイロ上で、データをローカルに保ちながら、マシンラーニングモデルをトレーニングする。
本稿では,不均一性に対処する非バイアスアルゴリズムであるElastic Federated Learning (EFL)を提案する。
上流と下流の両方の通信を圧縮する効率的かつ効率的なアルゴリズムである。
論文 参考訳(メタデータ) (2021-06-17T12:30:40Z) - Distillation-Based Semi-Supervised Federated Learning for
Communication-Efficient Collaborative Training with Non-IID Private Data [8.935169114460663]
本研究では,主にインクリメンタルなコミュニケーションコストを克服するフェデレートラーニング(FL)フレームワークを開発する。
モバイル端末間でローカルモデルの出力を交換する蒸留に基づく半教師付きFLアルゴリズムを提案する。
DS-FLでは、通信コストはモデルの出力次元にのみ依存し、モデルサイズに応じてスケールアップしない。
論文 参考訳(メタデータ) (2020-08-14T03:47:27Z) - Ternary Compression for Communication-Efficient Federated Learning [17.97683428517896]
フェデレートされた学習は、プライバシ保護とセキュアな機械学習に対する潜在的なソリューションを提供する。
本稿では,第3次フェデレーション平均化プロトコル(T-FedAvg)を提案する。
その結果,提案したT-FedAvgは通信コストの低減に有効であり,非IIDデータの性能も若干向上できることがわかった。
論文 参考訳(メタデータ) (2020-03-07T11:55:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。