論文の概要: Benchmarking Federated Machine Unlearning methods for Tabular Data
- arxiv url: http://arxiv.org/abs/2504.00921v1
- Date: Tue, 01 Apr 2025 15:53:36 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-03 13:20:15.001214
- Title: Benchmarking Federated Machine Unlearning methods for Tabular Data
- Title(参考訳): タブラルデータのためのフェデレーションマシンアンラーニング手法のベンチマーク
- Authors: Chenguang Xiao, Abhirup Ghosh, Han Wu, Shuo Wang, Diederick van Thiel,
- Abstract要約: マシンアンラーニングにより、モデルは要求時に特定のデータを忘れることができる。
本稿では,フェデレートされた環境での機械学習手法のベンチマークに関する先駆的な研究について述べる。
機械学習、ランダムフォレスト、ロジスティック回帰モデルの両方を用いて、この機能とインスタンスレベルでのアンラーニングについて検討する。
- 参考スコア(独自算出の注目度): 9.30408906787193
- License:
- Abstract: Machine unlearning, which enables a model to forget specific data upon request, is increasingly relevant in the era of privacy-centric machine learning, particularly within federated learning (FL) environments. This paper presents a pioneering study on benchmarking machine unlearning methods within a federated setting for tabular data, addressing the unique challenges posed by cross-silo FL where data privacy and communication efficiency are paramount. We explore unlearning at the feature and instance levels, employing both machine learning, random forest and logistic regression models. Our methodology benchmarks various unlearning algorithms, including fine-tuning and gradient-based approaches, across multiple datasets, with metrics focused on fidelity, certifiability, and computational efficiency. Experiments demonstrate that while fidelity remains high across methods, tree-based models excel in certifiability, ensuring exact unlearning, whereas gradient-based methods show improved computational efficiency. This study provides critical insights into the design and selection of unlearning algorithms tailored to the FL environment, offering a foundation for further research in privacy-preserving machine learning.
- Abstract(参考訳): モデルが要求時に特定のデータを忘れることを可能にする機械学習は、プライバシ中心の機械学習の時代、特に連邦学習(FL)環境において、ますます重要になっている。
本稿では,データプライバシと通信効率が最重要であるクロスサイロFLがもたらす独特な課題に対処するため,表層データに対するフェデレーションされた設定内での機械学習手法のベンチマークに関する先駆的な研究を提案する。
機械学習、ランダムフォレスト、ロジスティック回帰モデルの両方を用いて、この機能とインスタンスレベルでのアンラーニングについて検討する。
我々の方法論は、微調整と勾配に基づくアプローチを含む様々な未学習アルゴリズムを複数のデータセットにわたってベンチマークし、忠実度、精度、計算効率に重点を置いている。
実験により、忠実度はメソッド全体でも高いが、木ベースのモデルは精度が優れ、正確な未学習を保証する一方、勾配ベースの手法は計算効率が向上していることが示された。
この研究は、FL環境に適した未学習アルゴリズムの設計と選択に関する重要な洞察を与え、プライバシー保護機械学習のさらなる研究の基盤を提供する。
関連論文リスト
- Meta-Statistical Learning: Supervised Learning of Statistical Inference [59.463430294611626]
この研究は、大きな言語モデル(LLM)の成功を駆動するツールと原則が、分散レベルのタスクに取り組むために再利用可能であることを実証している。
本稿では,統計的推論タスクを教師付き学習問題として再構成するマルチインスタンス学習に触発されたメタ統計学習を提案する。
論文 参考訳(メタデータ) (2025-02-17T18:04:39Z) - Federated Learning driven Large Language Models for Swarm Intelligence: A Survey [2.769238399659845]
Federated Learning (FL)は、大規模言語モデル(LLM)をトレーニングするための魅力的なフレームワークを提供する
私たちは機械学習に重点を置いています。これは、忘れられる権利のようなプライバシー規則に従う上で重要な側面です。
摂動技術やモデル分解,漸進学習など,効果的なアンラーニングを可能にするさまざまな戦略を探求する。
論文 参考訳(メタデータ) (2024-06-14T08:40:58Z) - An Empirical Study of Efficiency and Privacy of Federated Learning
Algorithms [2.994794762377111]
今日の世界では、IoTネットワークの急速な拡大とスマートデバイスの普及により、相当量の異種データが生成される。
このデータを効果的に扱うためには、プライバシーと効率の両立を保証するために高度なデータ処理技術が必要である。
フェデレーション学習は、モデルをローカルにトレーニングし、データをプライバシを保存するためにサーバに集約する分散学習手法として登場した。
論文 参考訳(メタデータ) (2023-12-24T00:13:41Z) - A Comprehensive Study on Model Initialization Techniques Ensuring
Efficient Federated Learning [0.0]
フェデレートラーニング(FL)は、分散とプライバシ保護の方法で機械学習モデルをトレーニングするための有望なパラダイムとして登場した。
モデルに使用される手法の選択は、フェデレーション学習システムの性能、収束速度、通信効率、プライバシー保証において重要な役割を果たす。
本研究は,各手法のメリットとデメリットを慎重に比較,分類,記述し,さまざまなFLシナリオに適用性について検討する。
論文 参考訳(メタデータ) (2023-10-31T23:26:58Z) - Exploring Federated Unlearning: Analysis, Comparison, and Insights [101.64910079905566]
フェデレーション・アンラーニングは、フェデレーション・システムで訓練されたモデルからデータを選択的に除去することを可能にする。
本稿では,既存のフェデレーション・アンラーニング手法について検討し,アルゴリズムの効率,モデル精度への影響,プライバシ保護の有効性について検討する。
フェデレートされたアンラーニング手法を評価するための統一ベンチマークであるOpenFederatedUnlearningフレームワークを提案する。
論文 参考訳(メタデータ) (2023-10-30T01:34:33Z) - FRAMU: Attention-based Machine Unlearning using Federated Reinforcement
Learning [16.86560475992975]
FRAMU(Federated Reinforcement Learning)を用いた注意型機械学習について紹介する。
FRAMUには適応学習機構、プライバシー保護技術、最適化戦略が組み込まれている。
実験の結果,FRAMUはベースラインモデルよりも有意に優れていた。
論文 参考訳(メタデータ) (2023-09-19T03:13:17Z) - FedLALR: Client-Specific Adaptive Learning Rates Achieve Linear Speedup
for Non-IID Data [54.81695390763957]
フェデレートラーニング(Federated Learning)は、分散機械学習の手法である。
我々は,AMSGradの異種局所変種であるFedLALRを提案し,各クライアントが学習率を調整する。
クライアントが指定した自動調整型学習率スケジューリングが,クライアント数に対して収束し,線形高速化を実現することを示す。
論文 参考訳(メタデータ) (2023-09-18T12:35:05Z) - Local Learning Matters: Rethinking Data Heterogeneity in Federated
Learning [61.488646649045215]
フェデレートラーニング(FL)は、クライアントのネットワーク(エッジデバイス)でプライバシ保護、分散ラーニングを行うための有望な戦略である。
論文 参考訳(メタデータ) (2021-11-28T19:03:39Z) - ALT-MAS: A Data-Efficient Framework for Active Testing of Machine
Learning Algorithms [58.684954492439424]
少量のラベル付きテストデータのみを用いて機械学習モデルを効率的にテストする新しいフレームワークを提案する。
ベイズニューラルネットワーク(bnn)を用いたモデルアンダーテストの関心指標の推定が目的である。
論文 参考訳(メタデータ) (2021-04-11T12:14:04Z) - Edge-assisted Democratized Learning Towards Federated Analytics [67.44078999945722]
本稿では,エッジ支援型民主化学習機構であるEdge-DemLearnの階層的学習構造を示す。
また、Edge-DemLearnを柔軟なモデルトレーニングメカニズムとして検証し、リージョンに分散制御と集約の方法論を構築する。
論文 参考訳(メタデータ) (2020-12-01T11:46:03Z) - Training Keyword Spotting Models on Non-IID Data with Federated Learning [6.784774147680782]
そこで本研究では,フェデレート学習を用いて,高品質なキーワードスポッティングモデルをデバイス上でトレーニング可能であることを示す。
デバイス上のデータの適合に関するアルゴリズム上の制約を克服するため、最適化アルゴリズムの徹底的な実験研究を行う。
教師と学生のトレーニングを調査するために、サンプル(デバイス上のデータにゼロ可視性を持たせること)をラベル付けします。
論文 参考訳(メタデータ) (2020-05-21T00:53:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。