論文の概要: Unsupervised segmentation via semantic-apparent feature fusion
- arxiv url: http://arxiv.org/abs/2005.10513v1
- Date: Thu, 21 May 2020 08:28:49 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-30 23:38:17.055406
- Title: Unsupervised segmentation via semantic-apparent feature fusion
- Title(参考訳): semantic-apparent feature fusionによる教師なしセグメンテーション
- Authors: Xi Li, Huimin Ma, Hongbing Ma, Yidong Wang
- Abstract要約: 本研究では,意味親和性特徴融合(SAFF)に基づく教師なし前景セグメンテーション手法を提案する。
前景オブジェクトのキー領域はセマンティック機能によって正確に応答できる。
意味的特徴と明らかな特徴を融合させ、画像内適応的特徴量学習と画像間共通特徴学習のモジュールをカスケードすることにより、ベースラインをはるかに超える性能を達成する。
- 参考スコア(独自算出の注目度): 21.75371777263847
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Foreground segmentation is an essential task in the field of image
understanding. Under unsupervised conditions, different images and instances
always have variable expressions, which make it difficult to achieve stable
segmentation performance based on fixed rules or single type of feature. In
order to solve this problem, the research proposes an unsupervised foreground
segmentation method based on semantic-apparent feature fusion (SAFF). Here, we
found that key regions of foreground object can be accurately responded via
semantic features, while apparent features (represented by saliency and edge)
provide richer detailed expression. To combine the advantages of the two type
of features, an encoding method for unary region features and binary context
features is established, which realizes a comprehensive description of the two
types of expressions. Then, a method for adaptive parameter learning is put
forward to calculate the most suitable feature weights and generate foreground
confidence score map. Furthermore, segmentation network is used to learn
foreground common features from different instances. By fusing semantic and
apparent features, as well as cascading the modules of intra-image adaptive
feature weight learning and inter-image common feature learning, the research
achieves performance that significantly exceeds baselines on the PASCAL VOC
2012 dataset.
- Abstract(参考訳): 前景セグメンテーションは、画像理解の分野において不可欠なタスクである。
教師なしの条件下では、異なる画像やインスタンスは常に可変式を持ち、固定されたルールや単一タイプの機能に基づいて安定したセグメンテーション性能を達成するのが困難である。
そこで本研究では,意味論的特徴融合(SAFF)に基づく教師なし前景分割手法を提案する。
ここでは,前景オブジェクトのキー領域を意味的特徴によって正確に応答できるのに対し,見かけの特徴(塩分とエッジで表される)はより詳細な表現を提供する。
この2つのタイプの特徴の利点を組み合わせるために,2つの表現の包括的記述を実現するユニタリ領域特徴とバイナリコンテキスト特徴の符号化方法が確立される。
次に、最も適切な特徴重みを算出し、前景信頼度スコアマップを生成するための適応パラメータ学習法を提案する。
さらに、セグメンテーションネットワークは、異なるインスタンスから前景の共通機能を学ぶために使用される。
意味的特徴と明らかな特徴を融合させ、画像内適応的特徴量学習と画像間共通特徴学習のモジュールをカスケードすることにより、PASCAL VOC 2012データセットのベースラインをはるかに超える性能を達成する。
関連論文リスト
- Exploiting Object-based and Segmentation-based Semantic Features for Deep Learning-based Indoor Scene Classification [0.5572976467442564]
本稿では,オブジェクト検出から得られたセマンティック情報とセマンティックセグメンテーション技術の両方を用いる。
セグメンテーションマスクを用いて,Hu-Moments Features (SHMFs)によって指定されたHu-Momentsベースのセグメンテーションカテゴリの形状特徴を提供する手法を提案する。
GOS$2$F$2$Appによって指定された3つのメインブランチネットワークも提案されている。
論文 参考訳(メタデータ) (2024-04-11T13:37:51Z) - Auxiliary Tasks Enhanced Dual-affinity Learning for Weakly Supervised
Semantic Segmentation [79.05949524349005]
AuxSegNet+は、サリエンシマップから豊富な情報を探索する弱教師付き補助学習フレームワークである。
また,サリエンシとセグメンテーションの特徴マップから画素レベルの親和性を学習するためのクロスタスク親和性学習機構を提案する。
論文 参考訳(メタデータ) (2024-03-02T10:03:21Z) - Part-guided Relational Transformers for Fine-grained Visual Recognition [59.20531172172135]
識別的特徴を学習し,特徴変換モジュールとの相関関係を探索するフレームワークを提案する。
提案手法は,3-of-the-levelオブジェクト認識において,部分ブランチの追加に頼らず,最先端の性能に達する。
論文 参考訳(メタデータ) (2022-12-28T03:45:56Z) - Progressively Dual Prior Guided Few-shot Semantic Segmentation [57.37506990980975]
Few-shotのセマンティックセマンティックセマンティクスタスクは、いくつかのアノテーション付きサポートサンプルを使用して、クエリイメージのセマンティクスを実行することを目的としている。
本稿では,先進的に2重にガイドされた数発のセマンティックセマンティックセグメンテーションネットワークを提案する。
論文 参考訳(メタデータ) (2022-11-20T16:19:47Z) - SGDR: Semantic-guided Disentangled Representation for Unsupervised
Cross-modality Medical Image Segmentation [5.090366802287405]
本稿では,セグメンテーションタスクにおいて意味論的に意味のある特徴を正確に表現するために,意味誘導非絡み合い表現(SGDR)と呼ばれる新しいフレームワークを提案する。
提案手法を2つの公開データセットで検証し, 実験結果から, 2つの評価指標における工法の現状を, 有意差で比較した。
論文 参考訳(メタデータ) (2022-03-26T08:31:00Z) - CAD: Co-Adapting Discriminative Features for Improved Few-Shot
Classification [11.894289991529496]
少数のラベル付きサンプルを与えられた未確認のクラスに適応できるモデルを学ぶことを目的としている。
最近のアプローチでは、特徴抽出器を事前訓練し、その後、エピソードなメタラーニングのための微調整を行う。
本研究は, 複数ショットの分類において, 横断的および再重み付き識別機能を実現するための戦略を提案する。
論文 参考訳(メタデータ) (2022-03-25T06:14:51Z) - Learning Semantic-Aligned Feature Representation for Text-based Person
Search [8.56017285139081]
テキストに基づく人物検索のためのセマンティック・アライン・埋め込み手法を提案する。
特徴アライメントは、意味的に整った視覚的特徴とテキスト的特徴を自動的に学習することで達成される。
CUHK-PEDESおよびFlickr30Kデータセットによる実験結果から,本手法が最先端の性能を実現することを示す。
論文 参考訳(メタデータ) (2021-12-13T14:54:38Z) - Remote Sensing Images Semantic Segmentation with General Remote Sensing
Vision Model via a Self-Supervised Contrastive Learning Method [13.479068312825781]
リモートセマンティックセグメンテーションのためのGlobal style and Local matching Contrastive Learning Network (GLCNet)を提案する。
具体的には、画像レベルの表現をより良く学習するために、グローバルスタイルのコントラストモジュールが使用される。
コントラストモジュールにマッチするローカル特徴は、セマンティックセグメンテーションに有用なローカル領域の表現を学習するために設計されている。
論文 参考訳(メタデータ) (2021-06-20T03:03:40Z) - Improving Semantic Segmentation via Decoupled Body and Edge Supervision [89.57847958016981]
既存のセグメンテーションアプローチは、グローバルコンテキストをモデル化することでオブジェクトの内部の一貫性を改善すること、あるいはマルチスケールの特徴融合によって境界に沿ったオブジェクトの詳細を洗練することを目的としている。
本稿では,セマンティックセグメンテーションのための新しいパラダイムを提案する。
我々の洞察は、セマンティックセグメンテーションの魅力ある性能には、画像の高頻度と低頻度に対応するオブジェクトのテキストボディとテキストエッジを具体的にモデル化する必要があるということである。
さまざまなベースラインやバックボーンネットワークを備えた提案したフレームワークが,オブジェクト内部の一貫性とオブジェクト境界を向上させることを示す。
論文 参考訳(メタデータ) (2020-07-20T12:11:22Z) - Mining Cross-Image Semantics for Weakly Supervised Semantic Segmentation [128.03739769844736]
2つのニューラルコアテンションを分類器に組み込んで、画像間のセマンティックな類似点と相違点をキャプチャする。
オブジェクトパターン学習の強化に加えて、コアテンションは他の関連する画像からのコンテキストを活用して、ローカライズマップの推論を改善することができる。
提案アルゴリズムは,これらすべての設定に対して新たな最先端性を設定し,その有効性と一般化性を示す。
論文 参考訳(メタデータ) (2020-07-03T21:53:46Z) - AlignSeg: Feature-Aligned Segmentation Networks [109.94809725745499]
本稿では,機能集約プロセスにおける誤アライメント問題に対処するために,特徴適応型ネットワーク(AlignSeg)を提案する。
我々のネットワークは、それぞれ82.6%と45.95%という新しい最先端のmIoUスコアを達成している。
論文 参考訳(メタデータ) (2020-02-24T10:00:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。