論文の概要: Progressively Dual Prior Guided Few-shot Semantic Segmentation
- arxiv url: http://arxiv.org/abs/2211.15467v1
- Date: Sun, 20 Nov 2022 16:19:47 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-04 14:33:59.307255
- Title: Progressively Dual Prior Guided Few-shot Semantic Segmentation
- Title(参考訳): プログレッシブデュアルガイド下Few-shot Semantic Segmentation
- Authors: Qinglong Cao, Yuntian Chen, Xiwen Yao, Junwei Han
- Abstract要約: Few-shotのセマンティックセマンティックセマンティクスタスクは、いくつかのアノテーション付きサポートサンプルを使用して、クエリイメージのセマンティクスを実行することを目的としている。
本稿では,先進的に2重にガイドされた数発のセマンティックセマンティックセグメンテーションネットワークを提案する。
- 参考スコア(独自算出の注目度): 57.37506990980975
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Few-shot semantic segmentation task aims at performing segmentation in query
images with a few annotated support samples. Currently, few-shot segmentation
methods mainly focus on leveraging foreground information without fully
utilizing the rich background information, which could result in wrong
activation of foreground-like background regions with the inadaptability to
dramatic scene changes of support-query image pairs. Meanwhile, the lack of
detail mining mechanism could cause coarse parsing results without some
semantic components or edge areas since prototypes have limited ability to cope
with large object appearance variance. To tackle these problems, we propose a
progressively dual prior guided few-shot semantic segmentation network.
Specifically, a dual prior mask generation (DPMG) module is firstly designed to
suppress the wrong activation in foreground-background comparison manner by
regarding background as assisted refinement information. With dual prior masks
refining the location of foreground area, we further propose a progressive
semantic detail enrichment (PSDE) module which forces the parsing model to
capture the hidden semantic details by iteratively erasing the high-confidence
foreground region and activating details in the rest region with a hierarchical
structure. The collaboration of DPMG and PSDE formulates a novel few-shot
segmentation network that can be learned in an end-to-end manner. Comprehensive
experiments on PASCAL-5i and MS COCO powerfully demonstrate that our proposed
algorithm achieves the great performance.
- Abstract(参考訳): 少数ショットのセマンティクスセグメンテーションタスクは、いくつかのアノテーション付きサポートサンプルでクエリイメージのセグメンテーションを実行することを目的としている。
現在,多彩な背景情報を十分に活用することなく,フォアグラウンド情報を活用することが主眼となっているため,サポートクエリ画像ペアの劇的なシーン変化に適応できないフォアグラウンド的な背景領域を誤活性化させる可能性がある。
一方で、細部マイニング機構の欠如は、プロトタイプが大きなオブジェクトの外観のばらつきに対処する能力に制限があるため、意味的なコンポーネントやエッジ領域を必要とせずに粗い解析結果を引き起こす可能性がある。
これらの問題に対処するために、我々は段階的に2重に導かれる数発のセマンティックセマンティックセマンティクスネットワークを提案する。
具体的には,2つの先行マスク生成(DPMG)モジュールを背景情報として,背景・背景比較において誤った活性化を抑制するように設計されている。
さらに,前景領域の位置を精査するデュアルプリエントマスクを用いて,階層構造を持つrest領域における高信頼前景領域を反復的に消去し,その詳細を活性化することにより,解析モデルに隠れた意味的詳細を捉えさせるプログレッシブ・セマンティクス・ディテールエンリッチメント(psde)モジュールを提案する。
DPMGとPSDEのコラボレーションは、エンドツーエンドで学習できる新しい数ショットセグメンテーションネットワークを定式化した。
PASCAL-5i と MS COCO の総合実験により,提案アルゴリズムが優れた性能を発揮することを示す。
関連論文リスト
- MROVSeg: Breaking the Resolution Curse of Vision-Language Models in Open-Vocabulary Semantic Segmentation [33.67313662538398]
オープン語彙セマンティックセマンティックセグメンテーションのためのマルチレゾリューション・トレーニング・フレームワークを提案する。
MROVSegはスライディングウィンドウを使用して高解像度の入力を均一なパッチにスライスし、それぞれがよく訓練されたイメージエンコーダの入力サイズと一致する。
オープン語彙セマンティックセグメンテーションベンチマークにおけるMROVSegの優位性を実証する。
論文 参考訳(メタデータ) (2024-08-27T04:45:53Z) - Object Segmentation by Mining Cross-Modal Semantics [68.88086621181628]
マルチモーダル特徴の融合と復号を導くために,クロスモーダル・セマンティックスをマイニングする手法を提案する。
具体的には,(1)全周減衰核融合(AF),(2)粗大デコーダ(CFD),(3)多層自己超越からなる新しいネットワークXMSNetを提案する。
論文 参考訳(メタデータ) (2023-05-17T14:30:11Z) - Beyond the Prototype: Divide-and-conquer Proxies for Few-shot
Segmentation [63.910211095033596]
少ないショットのセグメンテーションは、少数の濃密なラベル付けされたサンプルのみを与えられた、目に見えないクラスオブジェクトをセグメンテーションすることを目的としている。
分割・分散の精神において, 単純かつ多目的な枠組みを提案する。
提案手法は、DCP(disvision-and-conquer proxies)と呼ばれるもので、適切な信頼性のある情報の開発を可能にする。
論文 参考訳(メタデータ) (2022-04-21T06:21:14Z) - AF$_2$: Adaptive Focus Framework for Aerial Imagery Segmentation [86.44683367028914]
航空画像のセグメンテーションにはいくつかの独特な課題があり、中でも最も重要なものは前景と背景のアンバランスにある。
本稿では,階層的なセグメンテーション手法を採用し,マルチスケール表現を適応的に活用するAdaptive Focus Framework (AF$)を提案する。
AF$は、広く使われている3つの航空ベンチマークの精度を大幅に改善した。
論文 参考訳(メタデータ) (2022-02-18T10:14:45Z) - SCNet: Enhancing Few-Shot Semantic Segmentation by Self-Contrastive
Background Prototypes [56.387647750094466]
Few-shot セマンティックセマンティックセマンティクスは,クエリイメージ内の新規クラスオブジェクトを,アノテーション付きの例で分割することを目的としている。
先進的なソリューションのほとんどは、各ピクセルを学習した前景のプロトタイプに合わせることでセグメンテーションを行うメトリクス学習フレームワークを利用している。
このフレームワークは、前景プロトタイプのみとのサンプルペアの不完全な構築のために偏った分類に苦しんでいます。
論文 参考訳(メタデータ) (2021-04-19T11:21:47Z) - Self-Guided and Cross-Guided Learning for Few-Shot Segmentation [12.899804391102435]
単発セグメンテーションのための自己誘導学習手法を提案する。
注釈付き支持画像の初期予測を行うことにより、被覆および検出された前景領域を一次および補助支持ベクトルに符号化する。
プライマリサポートベクターと補助サポートベクターの両方を集約することで、クエリイメージ上でより良いセグメンテーション性能が得られます。
論文 参考訳(メタデータ) (2021-03-30T07:36:41Z) - SOSD-Net: Joint Semantic Object Segmentation and Depth Estimation from
Monocular images [94.36401543589523]
これら2つのタスクの幾何学的関係を利用するための意味的対象性の概念を紹介します。
次に, 対象性仮定に基づくセマンティックオブジェクト・深さ推定ネットワーク(SOSD-Net)を提案する。
私たちの知識を最大限に活用するために、SOSD-Netは同時単眼深度推定とセマンティックセグメンテーションのためのジオメトリ制約を利用する最初のネットワークです。
論文 参考訳(メタデータ) (2021-01-19T02:41:03Z) - Unsupervised segmentation via semantic-apparent feature fusion [21.75371777263847]
本研究では,意味親和性特徴融合(SAFF)に基づく教師なし前景セグメンテーション手法を提案する。
前景オブジェクトのキー領域はセマンティック機能によって正確に応答できる。
意味的特徴と明らかな特徴を融合させ、画像内適応的特徴量学習と画像間共通特徴学習のモジュールをカスケードすることにより、ベースラインをはるかに超える性能を達成する。
論文 参考訳(メタデータ) (2020-05-21T08:28:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。