論文の概要: Sequential Recommendation with Self-Attentive Multi-Adversarial Network
- arxiv url: http://arxiv.org/abs/2005.10602v1
- Date: Thu, 21 May 2020 12:28:59 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-01 00:04:59.026061
- Title: Sequential Recommendation with Self-Attentive Multi-Adversarial Network
- Title(参考訳): セルフ・アテインティブ・マルチ・アドバーサル・ネットワークを用いた逐次レコメンデーション
- Authors: Ruiyang Ren, Zhaoyang Liu, Yaliang Li, Wayne Xin Zhao, Hui Wang, Bolin
Ding, Ji-Rong Wen
- Abstract要約: 逐次レコメンデーションにおける文脈情報の影響を明示的にモデル化するためのMFGAN(Multi-Factor Generative Adversarial Network)を提案する。
当社のフレームワークは,複数種類の因子情報を組み込むことが柔軟であり,各因子が推奨決定にどのように貢献するかを時間とともに追跡することができる。
- 参考スコア(独自算出の注目度): 101.25533520688654
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recently, deep learning has made significant progress in the task of
sequential recommendation. Existing neural sequential recommenders typically
adopt a generative way trained with Maximum Likelihood Estimation (MLE). When
context information (called factor) is involved, it is difficult to analyze
when and how each individual factor would affect the final recommendation
performance. For this purpose, we take a new perspective and introduce
adversarial learning to sequential recommendation. In this paper, we present a
Multi-Factor Generative Adversarial Network (MFGAN) for explicitly modeling the
effect of context information on sequential recommendation. Specifically, our
proposed MFGAN has two kinds of modules: a Transformer-based generator taking
user behavior sequences as input to recommend the possible next items, and
multiple factor-specific discriminators to evaluate the generated sub-sequence
from the perspectives of different factors. To learn the parameters, we adopt
the classic policy gradient method, and utilize the reward signal of
discriminators for guiding the learning of the generator. Our framework is
flexible to incorporate multiple kinds of factor information, and is able to
trace how each factor contributes to the recommendation decision over time.
Extensive experiments conducted on three real-world datasets demonstrate the
superiority of our proposed model over the state-of-the-art methods, in terms
of effectiveness and interpretability.
- Abstract(参考訳): 近年,シーケンシャルレコメンデーションの課題において,ディープラーニングが大きな進歩を遂げている。
既存のニューラルネットワークシーケンシャルリコメンデータは、通常、最大確率推定(mle)で訓練された生成的方法を採用する。
コンテキスト情報(ファクターと呼ばれる)が関与する場合、各要因が最終レコメンデーションのパフォーマンスにいつどのように影響するかを分析するのは難しい。
そこで我々は,新たな視点を採り,逐次的推薦に敵対的学習を導入する。
本稿では,コンテキスト情報が逐次レコメンデーションに与える影響を明示的にモデル化する多要素生成逆ネットワーク(mfgan)を提案する。
特に,提案するmfganには2種類のモジュールがある。ユーザ動作シーケンスを入力として次の項目を推薦するトランスフォーマティブ・ジェネレータと,生成したサブシーケンスを異なる要因の観点から評価する複数の因子特異的識別器である。
パラメータを学習するために、古典的なポリシー勾配法を採用し、識別器の報酬信号を用いて生成器の学習を誘導する。
当社のフレームワークは,複数種類の因子情報を組み込む柔軟性があり,各因子が推奨決定にどのように貢献するかを時間とともに追跡することができる。
実世界の3つのデータセットで実施した大規模な実験は,提案手法よりも有効性と解釈可能性の観点から,提案手法の優位性を実証している。
関連論文リスト
- Diffusion-based Contrastive Learning for Sequential Recommendation [6.3482831836623355]
本稿では,CaDiRecという,文脈対応拡散に基づく逐次推薦のためのコントラスト学習を提案する。
CaDiRecは、コンテキスト対応拡散モデルを使用して、シーケンス内の所定の位置に対する代替アイテムを生成する。
フレームワーク全体をエンドツーエンドでトレーニングし、拡散モデルとレコメンデーションモデルの間でアイテムの埋め込みを共有します。
論文 参考訳(メタデータ) (2024-05-15T14:20:37Z) - Contrastive Learning Method for Sequential Recommendation based on Multi-Intention Disentanglement [5.734747179463411]
MIDCL(Multi-Intention Disentanglement)に基づくコントラスト学習シーケンシャルレコメンデーション手法を提案する。
私たちの仕事では、意図は動的で多様なものとして認識され、ユーザの振る舞いは、しばしば現在のマルチインテンションによって駆動されます。
本稿では,最も関連性の高いユーザの対話的意図の探索と,正のサンプル対の相互情報の最大化のための2種類のコントラスト学習パラダイムを提案する。
論文 参考訳(メタデータ) (2024-04-28T15:13:36Z) - MISSRec: Pre-training and Transferring Multi-modal Interest-aware
Sequence Representation for Recommendation [61.45986275328629]
逐次レコメンデーションのためのマルチモーダル事前学習・転送学習フレームワークであるMISSRecを提案する。
ユーザ側ではトランスフォーマーベースのエンコーダデコーダモデルを設計し、コンテキストエンコーダがシーケンスレベルのマルチモーダルユーザ興味を捉えることを学習する。
候補項目側では,ユーザ適応項目表現を生成するために動的融合モジュールを採用する。
論文 参考訳(メタデータ) (2023-08-22T04:06:56Z) - Fisher-Weighted Merge of Contrastive Learning Models in Sequential
Recommendation [0.0]
我々は、まず、フィッシャー・マージング法をシークエンシャル・レコメンデーションに適用し、それに関連する実践的な課題に対処し、解決する。
提案手法の有効性を実証し, シーケンシャルラーニングおよびレコメンデーションシステムにおける最先端化の可能性を明らかにする。
論文 参考訳(メタデータ) (2023-07-05T05:58:56Z) - Towards Universal Sequence Representation Learning for Recommender
Systems [98.02154164251846]
我々はUniSRecという新しいユニバーサルシーケンス表現学習手法を提案する。
提案手法は、項目の関連記述テキストを用いて、異なる推薦シナリオ間で転送可能な表現を学習する。
我々のアプローチは、パラメータ効率のよい方法で、新しいレコメンデーションドメインやプラットフォームに効果的に移行できます。
論文 参考訳(メタデータ) (2022-06-13T07:21:56Z) - D2RLIR : an improved and diversified ranking function in interactive
recommendation systems based on deep reinforcement learning [0.3058685580689604]
本稿では,アクタ・クリティカルアーキテクチャを用いた深層強化学習に基づく推薦システムを提案する。
提案モデルでは,ユーザの嗜好に基づいて,多様かつ関連性の高いレコメンデーションリストを生成することができる。
論文 参考訳(メタデータ) (2021-10-28T13:11:29Z) - Contrastive Self-supervised Sequential Recommendation with Robust
Augmentation [101.25762166231904]
Sequential Recommendation Describes a set of technique to model dynamic user behavior to order to predict future interaction in sequence user data。
データスパーシリティやノイズの多いデータなど、古くて新しい問題はまだ残っている。
逐次レコメンデーション(CoSeRec)のためのコントラスト型自己監督学習を提案する。
論文 参考訳(メタデータ) (2021-08-14T07:15:25Z) - S^3-Rec: Self-Supervised Learning for Sequential Recommendation with
Mutual Information Maximization [104.87483578308526]
本稿では,シーケンスレコメンデーションのための自己改善学習のためのモデルS3-Recを提案する。
そこで本稿では,属性,項目,サブシーケンス,シーケンス間の相関関係を学習するために,4つの補助的自己教師対象を考案する。
6つの実世界のデータセットで実施された大規模な実験は、既存の最先端手法よりも提案手法が優れていることを示す。
論文 参考訳(メタデータ) (2020-08-18T11:44:10Z) - Self-Supervised Reinforcement Learning for Recommender Systems [77.38665506495553]
逐次リコメンデーションタスクのための自己指導型強化学習を提案する。
提案手法は,2つの出力層を持つ標準レコメンデーションモデルを強化する。
このようなアプローチに基づいて、自己監督型Q-ラーニング(SQN)と自己監督型アクター・クライブ(SAC)という2つのフレームワークを提案する。
論文 参考訳(メタデータ) (2020-06-10T11:18:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。