論文の概要: Contrastive Learning Method for Sequential Recommendation based on Multi-Intention Disentanglement
- arxiv url: http://arxiv.org/abs/2404.18214v2
- Date: Wed, 8 May 2024 17:23:11 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-09 18:50:56.569569
- Title: Contrastive Learning Method for Sequential Recommendation based on Multi-Intention Disentanglement
- Title(参考訳): 複数意図差分に基づく逐次推薦のコントラスト学習法
- Authors: Zeyu Hu, Yuzhi Xiao, Tao Huang, Xuanrong Huo,
- Abstract要約: MIDCL(Multi-Intention Disentanglement)に基づくコントラスト学習シーケンシャルレコメンデーション手法を提案する。
私たちの仕事では、意図は動的で多様なものとして認識され、ユーザの振る舞いは、しばしば現在のマルチインテンションによって駆動されます。
本稿では,最も関連性の高いユーザの対話的意図の探索と,正のサンプル対の相互情報の最大化のための2種類のコントラスト学習パラダイムを提案する。
- 参考スコア(独自算出の注目度): 5.734747179463411
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Sequential recommendation is one of the important branches of recommender system, aiming to achieve personalized recommended items for the future through the analysis and prediction of users' ordered historical interactive behaviors. However, along with the growth of the user volume and the increasingly rich behavioral information, how to understand and disentangle the user's interactive multi-intention effectively also poses challenges to behavior prediction and sequential recommendation. In light of these challenges, we propose a Contrastive Learning sequential recommendation method based on Multi-Intention Disentanglement (MIDCL). In our work, intentions are recognized as dynamic and diverse, and user behaviors are often driven by current multi-intentions, which means that the model needs to not only mine the most relevant implicit intention for each user, but also impair the influence from irrelevant intentions. Therefore, we choose Variational Auto-Encoder (VAE) to realize the disentanglement of users' multi-intentions. We propose two types of contrastive learning paradigms for finding the most relevant user's interactive intention, and maximizing the mutual information of positive sample pairs, respectively. Experimental results show that MIDCL not only has significant superiority over most existing baseline methods, but also brings a more interpretable case to the research about intention-based prediction and recommendation.
- Abstract(参考訳): シークエンシャルレコメンデーション(Sequential Recommation)は,ユーザの順序付けられた過去の対話行動の分析と予測を通じて,パーソナライズされた推奨項目を将来に向けて達成することを目的とした,レコメンデーションシステムの重要な分野の1つである。
しかし,ユーザ数の増加と行動情報の増加に伴い,対話型マルチインテンションを効果的に理解・混乱させる方法が,行動予測やシーケンシャルレコメンデーションに課題を生じさせる。
これらの課題を踏まえ,MIDCL(Multi-Intention Disentanglement)に基づくコントラスト学習シーケンシャルレコメンデーション手法を提案する。
私たちの作業では、意図は動的で多様なものとして認識され、ユーザ行動は、しばしば現在のマルチインテンションによって駆動される。
そこで我々は,ユーザのマルチインテントのゆがみを実現するために,変分自動エンコーダ(VAE)を選択する。
本稿では,最も関連性の高いユーザの対話的意図の探索と,正のサンプル対の相互情報の最大化のための2種類のコントラスト学習パラダイムを提案する。
実験の結果,MDDCLは既存のベースライン法よりも有意な優位性を持つだけでなく,意図に基づく予測と推奨に関する研究に,より解釈可能なケースをもたらすことが明らかとなった。
関連論文リスト
- Fisher-Weighted Merge of Contrastive Learning Models in Sequential
Recommendation [0.0]
我々は、まず、フィッシャー・マージング法をシークエンシャル・レコメンデーションに適用し、それに関連する実践的な課題に対処し、解決する。
提案手法の有効性を実証し, シーケンシャルラーニングおよびレコメンデーションシステムにおける最先端化の可能性を明らかにする。
論文 参考訳(メタデータ) (2023-07-05T05:58:56Z) - Knowledge Enhancement for Multi-Behavior Contrastive Recommendation [39.50243004656453]
本稿では,KMCLR(Knowledge Enhancement Multi-Behavior Contrastive Learning Recommendation)フレームワークを提案する。
本研究では,ユーザのパーソナライズされた行動情報を抽出し,ユーザ埋め込み強化のためのマルチ行動学習モジュールを設計する。
最適化段階では、粗粒度共通性とユーザの複数行動間の微粒度差をモデル化し、推奨効果をさらに改善する。
論文 参考訳(メタデータ) (2023-01-13T06:24:33Z) - Latent User Intent Modeling for Sequential Recommenders [92.66888409973495]
逐次リコメンデータモデルは、プラットフォーム上での氏のインタラクション履歴に基づいて、ユーザが次に対話する可能性のあるアイテムを予測することを学習する。
しかし、ほとんどのシーケンシャルなレコメンデータは、ユーザの意図に対する高いレベルの理解を欠いている。
したがって、インテントモデリングはユーザー理解と長期ユーザーエクスペリエンスの最適化に不可欠である。
論文 参考訳(メタデータ) (2022-11-17T19:00:24Z) - Coarse-to-Fine Knowledge-Enhanced Multi-Interest Learning Framework for
Multi-Behavior Recommendation [52.89816309759537]
マルチタイプの行動(例えば、クリック、カートの追加、購入など)は、ほとんどの現実世界のレコメンデーションシナリオに広く存在する。
最先端のマルチ振る舞いモデルは、すべての歴史的相互作用を入力として区別しない振る舞い依存を学習する。
本稿では,多様な行動に対する共有的・行動特異的な関心を学習するための,多目的学習フレームワークを提案する。
論文 参考訳(メタデータ) (2022-08-03T05:28:14Z) - Intent Contrastive Learning for Sequential Recommendation [86.54439927038968]
ユーザの意図を表現するために潜伏変数を導入し,クラスタリングにより潜伏変数の分布関数を学習する。
我々は,学習意図を対照的なSSLによってSRモデルに活用し,シーケンスのビューとそれに対応するインテントとの一致を最大化することを提案する。
4つの実世界のデータセットで実施された実験は、提案した学習パラダイムの優位性を示している。
論文 参考訳(メタデータ) (2022-02-05T09:24:13Z) - Knowledge-Enhanced Hierarchical Graph Transformer Network for
Multi-Behavior Recommendation [56.12499090935242]
本研究では,ユーザとレコメンデータシステムにおける項目間の多種類の対話パターンを探索する知識強化階層型グラフトランスフォーマネットワーク(KHGT)を提案する。
KHGTはグラフ構造化ニューラルネットワーク上に構築され、タイプ固有の振る舞い特性をキャプチャする。
KHGTは、様々な評価設定において、最先端のレコメンデーション手法よりも一貫して優れていることを示す。
論文 参考訳(メタデータ) (2021-10-08T09:44:00Z) - Hyper Meta-Path Contrastive Learning for Multi-Behavior Recommendation [61.114580368455236]
マルチビヘイビア情報によるユーザ購入予測は、現在のレコメンデーションシステムでは難しい問題である。
本稿では,ハイパーメタパスやハイパーメタグラフを構築するためのハイパーメタパスの概念を提案する。
最近のグラフコントラスト学習の成功により、異なる振る舞い間の依存関係を理解するために固定されたスキームを割り当てるのではなく、ユーザ行動パターンの埋め込みを適応的に学習する。
論文 参考訳(メタデータ) (2021-09-07T04:28:09Z) - Sequential Recommendation with Self-Attentive Multi-Adversarial Network [101.25533520688654]
逐次レコメンデーションにおける文脈情報の影響を明示的にモデル化するためのMFGAN(Multi-Factor Generative Adversarial Network)を提案する。
当社のフレームワークは,複数種類の因子情報を組み込むことが柔軟であり,各因子が推奨決定にどのように貢献するかを時間とともに追跡することができる。
論文 参考訳(メタデータ) (2020-05-21T12:28:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。