論文の概要: SymJAX: symbolic CPU/GPU/TPU programming
- arxiv url: http://arxiv.org/abs/2005.10635v1
- Date: Thu, 21 May 2020 13:37:25 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-30 23:55:49.647226
- Title: SymJAX: symbolic CPU/GPU/TPU programming
- Title(参考訳): SymJAX: シンボリックCPU/GPU/TPUプログラミング
- Authors: Randall Balestriero
- Abstract要約: SymJAXは、グラフ入力/出力/更新を単純化し、一般的な機械学習およびディープラーニングアプリケーションのための追加機能を提供するJAXのシンボリックプログラミングバージョンである。
ユーザの視点からは、SymJAXはLasagneのようなディープラーニング機能とともに、高速なグラフ最適化/コンパイルと幅広いハードウェアサポートを備えたLa Theanoエクスペリエンスを提供します。
- 参考スコア(独自算出の注目度): 9.868558660605995
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: SymJAX is a symbolic programming version of JAX simplifying graph
input/output/updates and providing additional functionalities for general
machine learning and deep learning applications. From an user perspective
SymJAX provides a la Theano experience with fast graph optimization/compilation
and broad hardware support, along with Lasagne-like deep learning
functionalities.
- Abstract(参考訳): SymJAXは、グラフ入力/出力/更新を簡単にし、一般的な機械学習およびディープラーニングアプリケーションのための追加機能を提供します。
ユーザの視点からは、SymJAXはLasagneのようなディープラーニング機能とともに、高速なグラフ最適化/コンパイルと幅広いハードウェアサポートを備えたLa Theanoエクスペリエンスを提供します。
関連論文リスト
- Benchmarking Predictive Coding Networks -- Made Simple [48.652114040426625]
まず,性能と簡易性を重視したPCXというライブラリを提案する。
私たちはPCXを使って、コミュニティが実験に使用する大規模なベンチマークを実装しています。
論文 参考訳(メタデータ) (2024-07-01T10:33:44Z) - JaxDecompiler: Redefining Gradient-Informed Software Design [0.0]
JaxDecompilerは、任意のJAX関数を編集可能なPythonコードに変換するツールである。
この記事では、JAX関数を編集可能なPythonコードに変換するツールであるJaxDecompilerを紹介します。
論文 参考訳(メタデータ) (2024-03-14T20:32:31Z) - DrJAX: Scalable and Differentiable MapReduce Primitives in JAX [9.676195490442367]
DrJAXは大規模分散および並列機械学習アルゴリズムをサポートするように設計されたライブラリである。
DrJAXはMapReduce計算のビルディングブロックをJAXのプリミティブとして組み込みます。
DrJAX計算はXLA HLOに直接変換することができ、幅広いMLトレーニングプラットフォームとの柔軟な統合を可能にする。
論文 参考訳(メタデータ) (2024-03-11T19:51:01Z) - BlackJAX: Composable Bayesian inference in JAX [8.834500692867671]
BlackJAXはサンプリングと変分推論アルゴリズムを実装するライブラリである。
Pythonで書かれており、JAXを使ってNumpPyのようなサンプルをコンパイルし、CPU、GPU、TPU上で変分メソッドを実行する。
論文 参考訳(メタデータ) (2024-02-16T16:21:02Z) - LLaGA: Large Language and Graph Assistant [73.71990472543027]
大規模言語とグラフアシスタント(LLaGA)は、グラフ構造化データの複雑さを扱う革新的なモデルである。
LLaGAは汎用性、一般化性、解釈性に優れており、異なるデータセットやタスク間で一貫して動作する。
実験の結果,LLaGAは4つのデータセットと3つのタスクに1つの単一モデルを用いて優れた性能を提供することがわかった。
論文 参考訳(メタデータ) (2024-02-13T02:03:26Z) - JaxMARL: Multi-Agent RL Environments and Algorithms in JAX [105.343918678781]
我々は、GPU対応の効率と多くの一般的なMARL環境のサポートを組み合わせた、最初のオープンソースPythonベースのライブラリであるJaxMARLを紹介します。
我々の実験は、壁時計時間の観点から、JAXベースのトレーニングパイプラインが既存のアプローチの約14倍高速であることを示している。
また、人気の高いStarCraft Multi-Agent ChallengeのJAXベースの近似的な再実装であるSMAXを紹介し、ベンチマークする。
論文 参考訳(メタデータ) (2023-11-16T18:58:43Z) - TpuGraphs: A Performance Prediction Dataset on Large Tensor
Computational Graphs [24.790481918123103]
本稿では,フルテンソルプログラムの性能予測データセットであるTpuGraphsを紹介する。
データセットの各グラフは、機械学習のワークロードの主計算を表します。
TpuGraphsは、最大のグラフプロパティ予測データセットよりも25倍のグラフを提供する。
論文 参考訳(メタデータ) (2023-08-25T17:04:35Z) - JaxPruner: A concise library for sparsity research [46.153423603424]
JaxPrunerはスパースニューラルネットワーク研究のためのオープンソースライブラリである。
メモリとレイテンシのオーバーヘッドを最小限に抑えながら、一般的なプルーニングとスパーストレーニングアルゴリズムを実装している。
論文 参考訳(メタデータ) (2023-04-27T10:45:30Z) - Graph Contrastive Learning Automated [94.41860307845812]
グラフコントラスト学習(GraphCL)は、有望な表現学習性能とともに登場した。
GraphCLのヒンジがアドホックなデータ拡張に与える影響は、データセット毎に手動で選択する必要がある。
本稿では,グラフデータ上でGraphCLを実行する際に,データ拡張を自動的に,適応的に動的に選択する統合バイレベル最適化フレームワークを提案する。
論文 参考訳(メタデータ) (2021-06-10T16:35:27Z) - CommPOOL: An Interpretable Graph Pooling Framework for Hierarchical
Graph Representation Learning [74.90535111881358]
新しい解釈可能なグラフプーリングフレームワークである CommPOOL を提案します。
グラフ表現学習プロセスにおいて、グラフの階層的なコミュニティ構造をキャプチャし、保存することができる。
CommPOOLは階層グラフ表現学習のための汎用的で柔軟なフレームワークです。
論文 参考訳(メタデータ) (2020-12-10T21:14:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。