論文の概要: Benchmarking Predictive Coding Networks -- Made Simple
- arxiv url: http://arxiv.org/abs/2407.01163v1
- Date: Mon, 1 Jul 2024 10:33:44 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-03 21:59:43.054395
- Title: Benchmarking Predictive Coding Networks -- Made Simple
- Title(参考訳): 予測的コーディングネットワークのベンチマーク - シンプルに
- Authors: Luca Pinchetti, Chang Qi, Oleh Lokshyn, Gaspard Olivers, Cornelius Emde, Mufeng Tang, Amine M'Charrak, Simon Frieder, Bayar Menzat, Rafal Bogacz, Thomas Lukasiewicz, Tommaso Salvatori,
- Abstract要約: まず,性能と簡易性を重視したPCXというライブラリを提案する。
私たちはPCXを使って、コミュニティが実験に使用する大規模なベンチマークを実装しています。
- 参考スコア(独自算出の注目度): 48.652114040426625
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this work, we tackle the problems of efficiency and scalability for predictive coding networks in machine learning. To do so, we first propose a library called PCX, whose focus lies on performance and simplicity, and provides a user-friendly, deep-learning oriented interface. Second, we use PCX to implement a large set of benchmarks for the community to use for their experiments. As most works propose their own tasks and architectures, do not compare one against each other, and focus on small-scale tasks, a simple and fast open-source library adopted by the whole community would address all of these concerns. Third, we perform extensive benchmarks using multiple algorithms, setting new state-of-the-art results in multiple tasks and datasets, as well as highlighting limitations inherent to PC that should be addressed. Thanks to the efficiency of PCX, we are able to analyze larger architectures than commonly used, providing baselines to galvanize community efforts towards one of the main open problems in the field: scalability. The code for PCX is available at \textit{https://github.com/liukidar/pcax}.
- Abstract(参考訳): 本研究では,機械学習における予測符号化ネットワークの効率性とスケーラビリティの問題に取り組む。
そこで我々はまず,パフォーマンスと簡易性を重視したPCXというライブラリを提案し,ユーザフレンドリでディープラーニング指向のインターフェースを提供する。
第2に、PCXを使って、コミュニティが実験に使用する大規模なベンチマークを実装しています。
ほとんどの研究が独自のタスクとアーキテクチャを提案しているため、相互比較はせず、小規模タスクに重点を置いているため、コミュニティ全体で採用されているシンプルで高速なオープンソースライブラリは、これらの懸念に対処するでしょう。
第三に、複数のアルゴリズムを用いて広範なベンチマークを行い、複数のタスクやデータセットに新しい最先端結果を設定し、対処すべきPC固有の制限を強調します。
PCXの効率のおかげで、一般的に使われるものよりも大きなアーキテクチャを分析でき、この分野で主要なオープンな問題であるスケーラビリティに対するコミュニティの取り組みを活性化するためのベースラインを提供します。
PCX のコードは \textit{https://github.com/liukidar/pcax} で公開されている。
関連論文リスト
- Benchmarking Uncertainty Quantification Methods for Large Language Models with LM-Polygraph [83.90988015005934]
不確実性定量化は機械学習アプリケーションにおいて重要な要素である。
最新のUQベースラインの集合を実装した新しいベンチマークを導入する。
我々は、11タスクにわたるUQと正規化技術に関する大規模な実証的研究を行い、最も効果的なアプローチを特定した。
論文 参考訳(メタデータ) (2024-06-21T20:06:31Z) - Enriching the Machine Learning Workloads in BigBench [0.4178382980763478]
この作業は、改善されたBigBench V2を3つの新しいワークロードで強化し、マシンラーニングアルゴリズムのカバレッジを拡大する。
私たちのワークロードでは、複数のアルゴリズムを使用して、MLlib、SystemML、Scikit-learn、Pandasといった一般的なライブラリ間で、同じアルゴリズムの異なる実装を比較しています。
論文 参考訳(メタデータ) (2024-06-16T08:32:28Z) - torchgfn: A PyTorch GFlowNet library [56.071033896777784]
torchgfnはPyTorchライブラリで、このニーズに対処することを目指している。
環境のためのシンプルなAPIと、サンプルと損失のための有用な抽象化を提供する。
論文 参考訳(メタデータ) (2023-05-24T00:20:59Z) - Towards Practical Few-Shot Query Sets: Transductive Minimum Description
Length Inference [0.0]
そこで本研究では,PrimAl Dual Minimum Description LEngth (PADDLE) の定式化について述べる。
制約のあるMDLライクな目的は、いくつかのタスクのデータに適合する有効なクラスのみを保ちながら、起こりうる多数のクラス間の競争を促進する。
論文 参考訳(メタデータ) (2022-10-26T08:06:57Z) - PDEBENCH: An Extensive Benchmark for Scientific Machine Learning [20.036987098901644]
部分微分方程式(PDE)に基づく時間依存シミュレーションタスクのベンチマークスイートであるPDEBenchを紹介する。
PDEBenchは、コードとデータの両方で構成され、古典的な数値シミュレーションと機械学習ベースラインの両方に対して、新しい機械学習モデルのパフォーマンスをベンチマークする。
論文 参考訳(メタデータ) (2022-10-13T17:03:36Z) - Benchopt: Reproducible, efficient and collaborative optimization
benchmarks [67.29240500171532]
Benchoptは、機械学習で最適化ベンチマークを自動化、再生、公開するためのフレームワークである。
Benchoptは実験を実行、共有、拡張するための既製のツールを提供することで、コミュニティのベンチマークを簡単にする。
論文 参考訳(メタデータ) (2022-06-27T16:19:24Z) - HiRID-ICU-Benchmark -- A Comprehensive Machine Learning Benchmark on
High-resolution ICU Data [0.8418021941792283]
ICU関連タスクの幅広い範囲をカバーするベンチマークの提供を目指している。
HiRIDデータセットを用いて,臨床医とのコラボレーションによって開発された複数の臨床関連タスクを定義した。
我々は,このタイプのデータに対する深層学習アプローチのいくつかの制限を強調し,現在最先端のシーケンスモデリング手法を詳細に分析する。
論文 参考訳(メタデータ) (2021-11-16T15:06:42Z) - Uncertainty Baselines: Benchmarks for Uncertainty & Robustness in Deep
Learning [66.59455427102152]
不確実性ベースライン(Uncertainty Baselines): 各種タスクにおける標準および最先端のディープラーニング手法の高品質な実装。
各ベースラインは、簡単に再利用可能で拡張可能なコンポーネントを備えた、自己完結型の実験パイプラインである。
モデルチェックポイント、Pythonノートブックとしての実験出力、結果を比較するためのリーダーボードを提供する。
論文 参考訳(メタデータ) (2021-06-07T23:57:32Z) - KILT: a Benchmark for Knowledge Intensive Language Tasks [102.33046195554886]
知識集約型言語タスク(KILT)のベンチマークを示す。
KILTのすべてのタスクはウィキペディアのスナップショットと同じだ。
共有密度ベクトル指数とSeq2seqモデルとの結合が強いベースラインであることが分かる。
論文 参考訳(メタデータ) (2020-09-04T15:32:19Z) - NAS evaluation is frustratingly hard [1.7188280334580197]
Neural Architecture Search(NAS)は、2012年のConvolutional Neural Networksと同じくらい、ゲームチェンジャーになることを約束する、エキサイティングな新しい分野だ。
異なるメソッドの比較は、まだ非常にオープンな問題です。
最初のコントリビューションは、データセット5ドルに対する8ドルのNASメソッドのベンチマークです。
論文 参考訳(メタデータ) (2019-12-28T21:24:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。