Towards Better Certified Segmentation via Diffusion Models
- URL: http://arxiv.org/abs/2306.09949v1
- Date: Fri, 16 Jun 2023 16:30:39 GMT
- Title: Towards Better Certified Segmentation via Diffusion Models
- Authors: Othmane Laousy, Alexandre Araujo, Guillaume Chassagnon, Marie-Pierre
Revel, Siddharth Garg, Farshad Khorrami, Maria Vakalopoulou
- Abstract summary: segmentation models can be vulnerable to adversarial perturbations, which hinders their use in critical-decision systems like healthcare or autonomous driving.
Recently, randomized smoothing has been proposed to certify segmentation predictions by adding Gaussian noise to the input to obtain theoretical guarantees.
In this paper, we address the problem of certifying segmentation prediction using a combination of randomized smoothing and diffusion models.
- Score: 62.21617614504225
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The robustness of image segmentation has been an important research topic in
the past few years as segmentation models have reached production-level
accuracy. However, like classification models, segmentation models can be
vulnerable to adversarial perturbations, which hinders their use in
critical-decision systems like healthcare or autonomous driving. Recently,
randomized smoothing has been proposed to certify segmentation predictions by
adding Gaussian noise to the input to obtain theoretical guarantees. However,
this method exhibits a trade-off between the amount of added noise and the
level of certification achieved. In this paper, we address the problem of
certifying segmentation prediction using a combination of randomized smoothing
and diffusion models. Our experiments show that combining randomized smoothing
and diffusion models significantly improves certified robustness, with results
indicating a mean improvement of 21 points in accuracy compared to previous
state-of-the-art methods on Pascal-Context and Cityscapes public datasets. Our
method is independent of the selected segmentation model and does not need any
additional specialized training procedure.
Related papers
- Multi-scale Diffusion Denoised Smoothing [79.95360025953931]
randomized smoothing has become one of a few tangible approaches that offers adversarial robustness to models at scale.
We present scalable methods to address the current trade-off between certified robustness and accuracy in denoised smoothing.
Our experiments show that the proposed multi-scale smoothing scheme combined with diffusion fine-tuning enables strong certified robustness available with high noise level.
arXiv Detail & Related papers (2023-10-25T17:11:21Z) - The Lipschitz-Variance-Margin Tradeoff for Enhanced Randomized Smoothing [85.85160896547698]
Real-life applications of deep neural networks are hindered by their unsteady predictions when faced with noisy inputs and adversarial attacks.
We show how to design an efficient classifier with a certified radius by relying on noise injection into the inputs.
Our novel certification procedure allows us to use pre-trained models with randomized smoothing, effectively improving the current certification radius in a zero-shot manner.
arXiv Detail & Related papers (2023-09-28T22:41:47Z) - Multiclass Alignment of Confidence and Certainty for Network Calibration [10.15706847741555]
Recent studies reveal that deep neural networks (DNNs) are prone to making overconfident predictions.
We propose a new train-time calibration method, which features a simple, plug-and-play auxiliary loss known as multi-class alignment of predictive mean confidence and predictive certainty (MACC)
Our method achieves state-of-the-art calibration performance for both in-domain and out-domain predictions.
arXiv Detail & Related papers (2023-09-06T00:56:24Z) - Denoising Diffusion Semantic Segmentation with Mask Prior Modeling [61.73352242029671]
We propose to ameliorate the semantic segmentation quality of existing discriminative approaches with a mask prior modeled by a denoising diffusion generative model.
We evaluate the proposed prior modeling with several off-the-shelf segmentors, and our experimental results on ADE20K and Cityscapes demonstrate that our approach could achieve competitively quantitative performance.
arXiv Detail & Related papers (2023-06-02T17:47:01Z) - On Calibrating Semantic Segmentation Models: Analyses and An Algorithm [51.85289816613351]
We study the problem of semantic segmentation calibration.
Model capacity, crop size, multi-scale testing, and prediction correctness have impact on calibration.
We propose a simple, unifying, and effective approach, namely selective scaling.
arXiv Detail & Related papers (2022-12-22T22:05:16Z) - Modeling Multimodal Aleatoric Uncertainty in Segmentation with Mixture
of Stochastic Expert [24.216869988183092]
We focus on capturing the data-inherent uncertainty (aka aleatoric uncertainty) in segmentation, typically when ambiguities exist in input images.
We propose a novel mixture of experts (MoSE) model, where each expert network estimates a distinct mode of aleatoric uncertainty.
We develop a Wasserstein-like loss that directly minimizes the distribution distance between the MoSE and ground truth annotations.
arXiv Detail & Related papers (2022-12-14T16:48:21Z) - Trustworthy Medical Segmentation with Uncertainty Estimation [0.7829352305480285]
This paper introduces a new Bayesian deep learning framework for uncertainty quantification in segmentation neural networks.
We evaluate the proposed framework on medical image segmentation data from Magnetic Resonances Imaging and Computed Tomography scans.
Our experiments on multiple benchmark datasets demonstrate that the proposed framework is more robust to noise and adversarial attacks as compared to state-of-the-art segmentation models.
arXiv Detail & Related papers (2021-11-10T22:46:05Z) - Efficient Ensemble Model Generation for Uncertainty Estimation with
Bayesian Approximation in Segmentation [74.06904875527556]
We propose a generic and efficient segmentation framework to construct ensemble segmentation models.
In the proposed method, ensemble models can be efficiently generated by using the layer selection method.
We also devise a new pixel-wise uncertainty loss, which improves the predictive performance.
arXiv Detail & Related papers (2020-05-21T16:08:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.