Quantum-Enhanced Simulation-Based Optimization
- URL: http://arxiv.org/abs/2005.10780v1
- Date: Thu, 21 May 2020 17:02:59 GMT
- Title: Quantum-Enhanced Simulation-Based Optimization
- Authors: Julien Gacon, Christa Zoufal, Stefan Woerner
- Abstract summary: Simulation-based optimization seeks to optimize an objective function that is computationally expensive to evaluate exactly.
Quantum Amplitude Estimation (QAE) can achieve a quadratic speed-up over classical Monte Carlo simulation.
- Score: 0.8057006406834467
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we introduce a quantum-enhanced algorithm for simulation-based
optimization. Simulation-based optimization seeks to optimize an objective
function that is computationally expensive to evaluate exactly, and thus, is
approximated via simulation. Quantum Amplitude Estimation (QAE) can achieve a
quadratic speed-up over classical Monte Carlo simulation. Hence, in many cases,
it can achieve a speed-up for simulation-based optimization as well. Combining
QAE with ideas from quantum optimization, we show how this can be used not only
for continuous but also for discrete optimization problems. Furthermore, the
algorithm is demonstrated on illustrative problems such as portfolio
optimization with a Value at Risk constraint and inventory management.
Related papers
- Quantum-Enhanced Simulation-Based Optimization for Newsvendor Problems [5.500172106704342]
We exploit the enhanced efficiency of Quantum Amplitude Estimation (QAE) compared to classical Monte Carlo simulation.
In this work, we make use of a quantum-enhanced algorithm for simulation-based optimization and apply it to solve a variant of the classical News problem known to be NP-hard.
arXiv Detail & Related papers (2024-03-26T05:14:50Z) - Towards Optimizations of Quantum Circuit Simulation for Solving Max-Cut
Problems with QAOA [1.5047640669285467]
Quantum approximate optimization algorithm (QAOA) is one of the popular quantum algorithms that are used to solve optimization problems via approximations.
However, performing QAOA on virtual quantum computers suffers from a slow simulation speed for solving optimization problems.
We propose techniques to accelerate QCS for QAOA using mathematical optimizations to compress quantum operations.
arXiv Detail & Related papers (2023-12-05T06:08:57Z) - Federated Conditional Stochastic Optimization [110.513884892319]
Conditional optimization has found in a wide range of machine learning tasks, such as in-variant learning tasks, AUPRC, andAML.
This paper proposes algorithms for distributed federated learning.
arXiv Detail & Related papers (2023-10-04T01:47:37Z) - Exponential Quantum Speedup for Simulation-Based Optimization Applications [4.302408747749262]
We focus on the LinQuSO subclass of QuSO, which is characterized by the linearity of the simulation problem.
We prove that a large subgroup of LinQuSO problems can be solved with up to exponential quantum speedups with regards to their simulation component.
arXiv Detail & Related papers (2023-05-15T09:32:51Z) - Quantum approximate optimization via learning-based adaptive
optimization [5.399532145408153]
Quantum approximate optimization algorithm (QAOA) is designed to solve objective optimization problems.
Our results demonstrate that the algorithm greatly outperforms conventional approximations in terms of speed, accuracy, efficiency and stability.
This work helps to unlock the full power of QAOA and paves the way toward achieving quantum advantage in practical classical tasks.
arXiv Detail & Related papers (2023-03-27T02:14:56Z) - An Empirical Evaluation of Zeroth-Order Optimization Methods on
AI-driven Molecule Optimization [78.36413169647408]
We study the effectiveness of various ZO optimization methods for optimizing molecular objectives.
We show the advantages of ZO sign-based gradient descent (ZO-signGD)
We demonstrate the potential effectiveness of ZO optimization methods on widely used benchmark tasks from the Guacamol suite.
arXiv Detail & Related papers (2022-10-27T01:58:10Z) - Evaluating the Convergence of Tabu Enhanced Hybrid Quantum Optimization [58.720142291102135]
We introduce the Tabu Enhanced Hybrid Quantum Optimization metaheuristic approach useful for optimization problem solving on a quantum hardware.
We address the theoretical convergence of the proposed scheme from the viewpoint of the collisions in the object which stores the tabu states, based on the Ising model.
arXiv Detail & Related papers (2022-09-05T07:23:03Z) - Classically optimized Hamiltonian simulation [0.0]
Hamiltonian simulation is a promising application for quantum computers.
We show that, compared to Trotter product formulas, the classically optimized circuits can be orders of magnitude more accurate.
arXiv Detail & Related papers (2022-05-23T16:14:43Z) - Adaptive pruning-based optimization of parameterized quantum circuits [62.997667081978825]
Variisy hybrid quantum-classical algorithms are powerful tools to maximize the use of Noisy Intermediate Scale Quantum devices.
We propose a strategy for such ansatze used in variational quantum algorithms, which we call "Efficient Circuit Training" (PECT)
Instead of optimizing all of the ansatz parameters at once, PECT launches a sequence of variational algorithms.
arXiv Detail & Related papers (2020-10-01T18:14:11Z) - A Dynamical Systems Approach for Convergence of the Bayesian EM
Algorithm [59.99439951055238]
We show how (discrete-time) Lyapunov stability theory can serve as a powerful tool to aid, or even lead, in the analysis (and potential design) of optimization algorithms that are not necessarily gradient-based.
The particular ML problem that this paper focuses on is that of parameter estimation in an incomplete-data Bayesian framework via the popular optimization algorithm known as maximum a posteriori expectation-maximization (MAP-EM)
We show that fast convergence (linear or quadratic) is achieved, which could have been difficult to unveil without our adopted S&C approach.
arXiv Detail & Related papers (2020-06-23T01:34:18Z) - Cross Entropy Hyperparameter Optimization for Constrained Problem
Hamiltonians Applied to QAOA [68.11912614360878]
Hybrid quantum-classical algorithms such as Quantum Approximate Optimization Algorithm (QAOA) are considered as one of the most encouraging approaches for taking advantage of near-term quantum computers in practical applications.
Such algorithms are usually implemented in a variational form, combining a classical optimization method with a quantum machine to find good solutions to an optimization problem.
In this study we apply a Cross-Entropy method to shape this landscape, which allows the classical parameter to find better parameters more easily and hence results in an improved performance.
arXiv Detail & Related papers (2020-03-11T13:52:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.