Classification of Epithelial Ovarian Carcinoma Whole-Slide Pathology
Images Using Deep Transfer Learning
- URL: http://arxiv.org/abs/2005.10957v2
- Date: Mon, 29 Jun 2020 03:03:56 GMT
- Title: Classification of Epithelial Ovarian Carcinoma Whole-Slide Pathology
Images Using Deep Transfer Learning
- Authors: Yiping Wang, David Farnell, Hossein Farahani, Mitchell Nursey, Basile
Tessier-Cloutier, Steven J.M. Jones, David G. Huntsman, C. Blake Gilks, Ali
Bashashati
- Abstract summary: Ovarian cancer is the most lethal cancer of the female reproductive organs.
Currently, these histotypes are determined by a pathologist's microscopic examination of tumor whole-slide images (WSI)
We utilized a textittwo-stage deep transfer learning algorithm based on convolutional neural networks (CNN) and progressive resizing for automatic classification of epithelial ovarian carcinoma WSIs.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Ovarian cancer is the most lethal cancer of the female reproductive organs.
There are $5$ major histological subtypes of epithelial ovarian cancer, each
with distinct morphological, genetic, and clinical features. Currently, these
histotypes are determined by a pathologist's microscopic examination of tumor
whole-slide images (WSI). This process has been hampered by poor inter-observer
agreement (Cohen's kappa $0.54$-$0.67$). We utilized a \textit{two}-stage deep
transfer learning algorithm based on convolutional neural networks (CNN) and
progressive resizing for automatic classification of epithelial ovarian
carcinoma WSIs. The proposed algorithm achieved a mean accuracy of $87.54\%$
and Cohen's kappa of $0.8106$ in the slide-level classification of $305$ WSIs;
performing better than a standard CNN and pathologists without
gynecology-specific training.
Related papers
- Convolutional neural network classification of cancer cytopathology images: taking breast cancer as an example [40.3927727959038]
This paper introduces an approach utilizing convolutional neural networks (CNNs) for the rapid categorization of pathological images.
It enables the rapid and automatic classification of pathological images into benign and malignant groups.
It demonstrates that the proposed method effectively enhances the accuracy in classifying pathological images of breast cancer.
arXiv Detail & Related papers (2024-04-12T07:08:05Z) - A Pathologist-Informed Workflow for Classification of Prostate Glands in
Histopathology [62.997667081978825]
Pathologists diagnose and grade prostate cancer by examining tissue from needle biopsies on glass slides.
Cancer's severity and risk of metastasis are determined by the Gleason grade, a score based on the organization and morphology of prostate cancer glands.
This paper proposes an automated workflow that follows pathologists' textitmodus operandi, isolating and classifying multi-scale patches of individual glands.
arXiv Detail & Related papers (2022-09-27T14:08:19Z) - Multi-Scale Hybrid Vision Transformer for Learning Gastric Histology:
AI-Based Decision Support System for Gastric Cancer Treatment [50.89811515036067]
Gastric endoscopic screening is an effective way to decide appropriate gastric cancer (GC) treatment at an early stage, reducing GC-associated mortality rate.
We propose a practical AI system that enables five subclassifications of GC pathology, which can be directly matched to general GC treatment guidance.
arXiv Detail & Related papers (2022-02-17T08:33:52Z) - Medulloblastoma Tumor Classification using Deep Transfer Learning with
Multi-Scale EfficientNets [63.62764375279861]
We propose an end-to-end MB tumor classification and explore transfer learning with various input sizes and matching network dimensions.
Using a data set with 161 cases, we demonstrate that pre-trained EfficientNets with larger input resolutions lead to significant performance improvements.
arXiv Detail & Related papers (2021-09-10T13:07:11Z) - Wide & Deep neural network model for patch aggregation in CNN-based
prostate cancer detection systems [51.19354417900591]
Prostate cancer (PCa) is one of the leading causes of death among men, with almost 1.41 million new cases and around 375,000 deaths in 2020.
To perform an automatic diagnosis, prostate tissue samples are first digitized into gigapixel-resolution whole-slide images.
Small subimages called patches are extracted and predicted, obtaining a patch-level classification.
arXiv Detail & Related papers (2021-05-20T18:13:58Z) - Glioma Classification Using Multimodal Radiology and Histology Data [0.41883694872353855]
We propose a pipeline for automatic classification of gliomas into three sub-types: oligodendroglioma, astrocytoma, and glioblastoma.
The classification algorithm was evaluated using the data set provided in the CPM-RadPath 2020 challenge.
arXiv Detail & Related papers (2020-11-10T21:38:26Z) - Gleason Grading of Histology Prostate Images through Semantic
Segmentation via Residual U-Net [60.145440290349796]
The final diagnosis of prostate cancer is based on the visual detection of Gleason patterns in prostate biopsy by pathologists.
Computer-aided-diagnosis systems allow to delineate and classify the cancerous patterns in the tissue.
The methodological core of this work is a U-Net convolutional neural network for image segmentation modified with residual blocks able to segment cancerous tissue.
arXiv Detail & Related papers (2020-05-22T19:49:10Z) - Segmentation for Classification of Screening Pancreatic Neuroendocrine
Tumors [72.65802386845002]
This work presents comprehensive results to detect in the early stage the pancreatic neuroendocrine tumors (PNETs) in abdominal CT scans.
To the best of our knowledge, this task has not been studied before as a computational task.
Our approach outperforms state-of-the-art segmentation networks and achieves a sensitivity of $89.47%$ at a specificity of $81.08%$.
arXiv Detail & Related papers (2020-04-04T21:21:44Z) - Multi-scale Domain-adversarial Multiple-instance CNN for Cancer Subtype
Classification with Unannotated Histopathological Images [16.02231907106384]
We develop a new CNN-based cancer subtype classification method by effectively combining multiple-instance, domain adversarial, and multi-scale learning frameworks.
The classification performance was significantly better than the standard CNN or other conventional methods, and the accuracy compared favorably with that of standard pathologists.
arXiv Detail & Related papers (2020-01-06T14:09:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.