論文の概要: Arbitrary-sized Image Training and Residual Kernel Learning: Towards
Image Fraud Identification
- arxiv url: http://arxiv.org/abs/2005.11043v1
- Date: Fri, 22 May 2020 07:57:24 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-30 09:44:38.598466
- Title: Arbitrary-sized Image Training and Residual Kernel Learning: Towards
Image Fraud Identification
- Title(参考訳): 任意サイズのイメージトレーニングと残留カーネル学習:画像不正同定に向けて
- Authors: Hongyu Li, Xiaogang Huang, Zhihui Fu, and Xiaolin Li
- Abstract要約: そこで本研究では,原入力尺度の画像の縮小を伴わずにトレーニングを行うフレームワークを提案する。
任意の大きさの画像トレーニング方法は、擬似バッチ勾配勾配に依存する。
学習した残余カーネルとPBGDにより,提案手法は画像不正識別における最先端の結果を達成した。
- 参考スコア(独自算出の注目度): 10.47223719403823
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Preserving original noise residuals in images are critical to image fraud
identification. Since the resizing operation during deep learning will damage
the microstructures of image noise residuals, we propose a framework for
directly training images of original input scales without resizing. Our
arbitrary-sized image training method mainly depends on the pseudo-batch
gradient descent (PBGD), which bridges the gap between the input batch and the
update batch to assure that model updates can normally run for arbitrary-sized
images.
In addition, a 3-phase alternate training strategy is designed to learn
optimal residual kernels for image fraud identification. With the learnt
residual kernels and PBGD, the proposed framework achieved the state-of-the-art
results in image fraud identification, especially for images with small
tampered regions or unseen images with different tampering distributions.
- Abstract(参考訳): 画像におけるノイズ残差の保存は画像不正同定に不可欠である。
深層学習におけるリサイズ操作は画像ノイズ残差の微細構造を損なうため,元の入力スケールの画像を再サイズすることなく直接トレーニングする枠組みを提案する。
我々の任意のサイズの画像訓練法は主に、入力バッチと更新バッチのギャップを埋める擬似バッチ勾配降下(PBGD)に依存し、モデル更新が通常任意のサイズの画像に対して実行できることを保証する。
さらに、画像不正識別のための最適残差カーネルを学習する3相代替トレーニング戦略を設計する。
学習された残余カーネルとPBGDを用いて、特に小さな改ざん領域を持つ画像や、異なる改ざん分布を持つ未確認画像に対して、画像不正識別の最先端結果を達成した。
関連論文リスト
- Data Attribution for Text-to-Image Models by Unlearning Synthesized Images [71.23012718682634]
テキスト・ツー・イメージ・モデルにおけるデータ帰属の目標は、新しい画像の生成に最も影響を与えるトレーニング画像を特定することである。
本稿では,高能率画像の同定を効果的に行う新しい手法を提案する。
論文 参考訳(メタデータ) (2024-06-13T17:59:44Z) - Masked Image Training for Generalizable Deep Image Denoising [53.03126421917465]
本稿では,デノナイジングネットワークの一般化性能を高めるための新しい手法を提案する。
提案手法では,入力画像のランダムなピクセルをマスキングし,学習中に欠落した情報を再構成する。
提案手法は,他のディープラーニングモデルよりも優れた一般化能力を示し,実世界のシナリオに直接適用可能である。
論文 参考訳(メタデータ) (2023-03-23T09:33:44Z) - Multiscale Structure Guided Diffusion for Image Deblurring [24.09642909404091]
拡散確率モデル (DPM) は画像の劣化に用いられている。
暗黙のバイアスとして、単純だが効果的なマルチスケール構造ガイダンスを導入する。
目に見えないデータのアーティファクトが少ないほど、より堅牢なデブロアリング結果を示します。
論文 参考訳(メタデータ) (2022-12-04T10:40:35Z) - Fast Hybrid Image Retargeting [0.0]
本稿では,コンテント・アウェア・トリミングを用いて歪みを定量化し,抑制する手法を提案する。
我々の手法は,実行時間のごく一部で実行しながら,最近の手法より優れています。
論文 参考訳(メタデータ) (2022-03-25T11:46:06Z) - Unleashing the Potential of Unsupervised Pre-Training with
Intra-Identity Regularization for Person Re-Identification [10.045028405219641]
我々は、UP-ReIDと呼ばれる対照的学習(CL)パイプラインに基づいて、ReIDのための教師なし事前学習フレームワークを設計する。
UP-ReIDにI$2$-の正則化を導入し,大域的な画像的側面と局所的なパッチ的側面の2つの制約としてインスタンス化する。
我々のUP-ReID事前学習モデルは、下流のReID微調整の利点を大いに生かし、最先端の性能を達成することができる。
論文 参考訳(メタデータ) (2021-12-01T07:16:37Z) - Fidelity Estimation Improves Noisy-Image Classification with Pretrained
Networks [12.814135905559992]
本稿では,事前学習した分類器に適用可能な手法を提案する。
提案手法では,特徴抽出器の内部表現に融合した忠実度マップの推定値を利用する。
オラクルの忠実度マップを用いた場合, ノイズや復元画像のトレーニングにおいて, 完全に再トレーニングされた手法よりも優れていた。
論文 参考訳(メタデータ) (2021-06-01T17:58:32Z) - A low-rank representation for unsupervised registration of medical
images [10.499611180329804]
本稿では,低ランク表現,すなわちRegnet-LRRに基づく新しい手法を提案する。
低ランク表現は、モデルの能力と堅牢性を高め、ノイズの多いデータ登録シナリオにおいて大幅な改善をもたらすことを示す。
論文 参考訳(メタデータ) (2021-05-20T07:04:10Z) - Deep Variational Network Toward Blind Image Restoration [60.45350399661175]
ブラインド画像復元はコンピュータビジョンでは一般的だが難しい問題である。
両利点を両立させることを目的として,新しいブラインド画像復元手法を提案する。
画像デノイングと超解像という2つの典型的なブラインド赤外線タスクの実験により,提案手法が現状よりも優れた性能を達成できることが実証された。
論文 参考訳(メタデータ) (2020-08-25T03:30:53Z) - Salvage Reusable Samples from Noisy Data for Robust Learning [70.48919625304]
本稿では,Web画像を用いた深部FGモデルのトレーニングにおいて,ラベルノイズに対処するための再利用可能なサンプル選択と修正手法を提案する。
私たちのキーとなるアイデアは、再利用可能なサンプルの追加と修正を行い、それらをクリーンな例とともに活用してネットワークを更新することです。
論文 参考訳(メタデータ) (2020-08-06T02:07:21Z) - Distilling Localization for Self-Supervised Representation Learning [82.79808902674282]
コントラスト学習は教師なし表現学習に革命をもたらした。
現在のコントラストモデルでは、前景オブジェクトのローカライズには効果がない。
本稿では,背景変化を学習するためのデータ駆動型手法を提案する。
論文 参考訳(メタデータ) (2020-04-14T16:29:42Z) - Exploiting Deep Generative Prior for Versatile Image Restoration and
Manipulation [181.08127307338654]
本研究は, 大規模自然画像に基づいて学習したGAN(Generative Adversarial Network)により, 得られた画像の有効利用方法を示す。
深層生成前駆体(DGP)は、色、パッチ、解像度、様々な劣化した画像の欠落したセマンティクスを復元するための説得力のある結果を提供する。
論文 参考訳(メタデータ) (2020-03-30T17:45:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。